Hydronix-kosteusanturi Konfigurointi- ja kalibrointiopas

Anna uudelleentilausta varten osanumero:	HD0679fi
Muutos:	1.8.0
Muutospäivämäärä:	Helmikuu 2023

Copyright

Tässä dokumentaatiossa olevia tietoja tai siinä kuvattua tuotetta ei saa muuntaa tai jäljentää kokonaan eikä osittain missään materiaalisessa muodossa muuten kuin Hydronix Limitediltä (jäljempänä Hydronix) etukäteen saadulla kirjallisella luvalla.

© 2023

Hydronix Limited Units 11-12 Henley Business Park Pirbright Road Normandy Surrey GU3 2DX United Kingdom

Kaikki oikeudet pidätetään.

ASIAKASVASTUU

Asiakas hyväksyy tässä dokumentaatiossa kuvattua tuotetta käyttäessään, että tuote on ohjelmoitava elektroninen järjestelmä, joka on luonteeltaan monimutkainen eikä välttämättä täysin virheetön. Asiakas ottaa samalla vastuun siitä, että tuotteen asennus, käyttöönotto, käyttö ja ylläpito tehdään oikein. Näiden toimien tekijöiden on oltava osaavia, asianmukaisen koulutuksen saaneita henkilöitä, ja toimet on tehtävä saatavilla olevia ohjeita ja turvaohjeita noudattaen sekä hyvän insinöörikäytännön mukaisesti. Tuotteen soveltuvuus kuhunkin käyttötarkoitukseen on varmistettava perinpohjaisesti.

DOKUMENTAATIOSSA OLEVAT VIRHEET

Tässä dokumentaatiossa kuvattua tuotetta kehitetään ja parannetaan jatkuvasti. Kaikki tämän dokumentaation sisältämät tekniset tiedot ja tuotetta sekä sen käyttöä koskevat yksityiskohdat ovat Hydronixin hyvässä uskossa antamia.

Hydronix ottaa mielellään vastaan tuotteeseen ja tähän dokumentaatioon liittyviä kommentteja ja ehdotuksia.

TIEDOT

Hydronix, Hydro-Probe, Hydro-Mix, Hydro-Skid, Hydro-View ja Hydro-Control ovat Hydronix Limitedin rekisteröityjä tavaramerkkejä.

Hydronixin toimipaikat

Ison-Britannian pääkonttori

Units 11-12 Henley Business Park
Pirbright Road
Normandy
Surrey
GU3 2DX

Puh: +44 1483 468900

- Sähköposti: support@hydronix.com sales@hydronix.com
- Verkkosivusto: www.hydronix.com

Pohjois-Amerikan konttori

Kattaa Pohjois- ja Etelä-Amerikan, Yhdysvaltojen muut alueet, Espanjan ja Portugalin

Osoite:	692 West Conway Road
	Suite 24, Harbor Springs
	MI 47940
	USA
Puh:	+1 888 887 4884 (maksuton)
	+1 231 439 5000
Faksi:	+1 888 887 4822 (maksuton)
	+1 231 439 5001

Euroopan konttori

Kattaa Keski-Euroopan, Venäjän ja Etelä-Afrikan

Puh:	+49 2563 4858
Faksi:	+49 2563 5016

Ranskan konttori

Puh: +33 652 04 89 04

Muutoshistoria:

Versionro	Pvm	Muutoksen kuvaus
1.2.0	Helmikuu 2016	Ensimmäinen julkaisu
1.3.0	Toukokuu 2016	Hälytystavan asetukset lisätty
1.3.1	Elokuu 2016	Vähäinen päivitys
1.4.0	Syyskuu 2016	Kalibrointimateriaalin käsittely päivitetty. Brix-kalibrointi korjattu.
1.5.0	Huhtikuu 2017	Lähdön lämpötila-asteikko päivitetty HMHT:lle
1.6.0	Joulukuu 2017	Vähäinen päivitys
1.7.0	Kesäkuu 2021	Suodattimen sisällytys lisätty. Toissijainen protokolla lisätty
1.8.0	Helmikuu 2023	Lisätty Hydro-Probe BX ja CA Moisture Probe

Sisällysluettelo

Luku	1 Johdanto	. 11
1	Johdanto	. 11
Luku	2 Konfigurainti	15
1	Anturin konfigurointi	15
2	Analogisen lähdön asetukset	15
3	Digitaalisten tuloien/lähtöien asetukset	.17
4	Keskiarvoparametrit	. 19
5	Suodatus	.20
6	Tyypillinen kosteusjäljitys Hydronix-kosteusanturista virtaavassa materiaalissa	.21
7	Signaalin suodattaminen sekoitinkäyttökohteessa	.22
8	Mittaustilat	.24
9	Anturin tietojen lähdöt	.26
10	Toissijainen protokolla	. 28
Luku	3 Anturin integrointi ia materiaalikalihrointi	20
1	Anturin integrointi ja materiaaliivalioronti	20
2	Johdanto materiaalikalibrointiin	29
3	SSD-kerroin ja SSD-kosteussisältö	.31
4	Kalibrointitietoien tallentaminen	.31
5	Kalibrointimenettely virtaavalle materiaalille (lineaarinen)	.32
6	Hyvä ja huono kalibrointi	. 34
7	Neliöllinen kalibrointi	. 35
8	Anturin kalibrointi sekoittimessa	. 36
9	Brix-kalibrointi	. 38
	1 Darbaat käytännöt	11
Luku 4	Yleinen kajkille käyttökohteille	.41 .41
Luku	5 Anturin vianmääritys	.43
1	Anturin vianmääritys	.43
Luku	6 Usein kysyttyjä kysymyksiä	.49
Liite A	Asiakirjaviittaukset	.51
1	Asiakirjaviittaukset	.51

Kuvaluettelo

Kuva 1: Anturin yhdistäminen (yleiskuvaus)	13
Kuva 2: Lähtömuuttujan määrittämisen ohje	15
Kuva 3: Raaka- ja Suodattimen sisällytys -anturitulos	21
Kuva 4: Raaka skaalaamkosteusjäljitys virtaavassa materiaalissa	21
Kuva 5: Suodatettua signaalia esittävä kuvaaja	
Kuva 6: Tyypillinen kosteuskäyrä	
Kuva 7: Kuvaaja, joka esittää raakasignaalia sekoitusjakson aikana	23
Kuva 8: Raaka skaalaamsignaalin suodatus (1)	23
Kuva 9: Raakasignaalin suodatus (2)	24
Kuva 10: Skaalaamaton-arvojen ja kosteuden suhde	25
Kuva 11: Tietojen järjestely anturissa	
Kuva 12: Ei mitään määritetty lähdön valinnassa	
Kuva 13: Vanhan lähdön valinta	27
Kuva 14: Kalibroinnit kolmelle eri materiaalille	
Kuva 15: Tyypilliset kalibrointitulokset	
Kuva 16: Kalibrointi anturin sisäisesti	
Kuva 17: Kalibrointi ohjausjärjestelmässä	
Kuva 18: Esimerkki hyvästä materiaalikalibroinnista	
Kuva 19: Esimerkkejä huonoista materiaalikalibrointipisteistä	
Kuva 20: Esimerkki hyvästä neliöllisestä kalibroinnista	
Kuva 21: Esimerkki huonosta neliöllisestä kalibroinnista	
Kuva 22: Esimerkki hyvästä Brix-kalibroinnista	
Kuva 23: Esimerkki huonosta Brix-kalibroinnista	

Luku 1

1 Johdanto

Tämä konfigurointi- ja kalibrointiopas koskee vain seuraavia Hydronix-antureita:

Hydro-Probe	(Mallinumerosta HP04 lähtien)
Hydro-Probe XT	(Mallinumerosta HPXT02 lähtien)
Hydro-Probe Orbiter	(Mallinumerosta ORB3 lähtien)
Hydro-Probe SE	(Mallinumerosta SE03 lähtien)
Hydro-Mix	(Mallinumerosta HM08 lähtien)
Hydro-Mix HT	(Mallinumerosta HMHT01 lähtien)
Hydro-Mix XT	(Mallinumerosta HMXT01 lähtien)
Hydro-Probe BX	(Mallinumerosta HPBX01 lähtien)
CA Moisture Probe	(Mallinumerosta CA0022)

Muiden mallinumeroiden käyttöoppaat ovat saatavana osoitteesta www.hydronix.com.

Hydronix-mikroaaltokosteusanturit käyttävät nopeita digitaalisia signaalinkäsittelysuodattimia ja kehittyneitä mittaustekniikoita. Näin saadaan signaalinen, joka on lineaarinen mitattavan materiaalin kosteuden muutoksen kanssa. Anturin on oltava asennettuna materiaalivirtaukseen. Se antaa verkkolähdön kautta tiedon materiaalin kosteuden muutoksesta.

Tyypillisiä käyttökohteita ovat kosteusmittaukset hiekasta, betonin runkoaineesta, betonista, biomassasta, viljasta, rehusta ja maatalousmateriaaleista.

Anturit soveltuvat monenlaisiin käyttötilanteisiin, ja ne on suunniteltu sallimaan materiaalin virtaaminen anturin ohi. Seuraavassa on esimerkkejä tyypillisistä käyttökohteista.

- Säiliöt/syöttösuppilot/siilot
- Kuljettimet
- Tärysyöttimet
- Sekoittimet

Anturilla on kaksi analogista lähtöä, jotka ovat täysin konfiguroitavissa ja voidaan kalibroida sisäisesti antamaan suoran kosteustuloksen, joka on yhteensopiva minkä tahansa ohjausjärjestelmän kanssa.

Käytettävissä on kaksi digitaalista tuloa, jotka voivat ohjata sisäistä keskiarvotoimintoa. Tämän ansiosta anturin 25 kertaa sekunnissa tapahtuva mittaus pystyy havaitsemaan nopeasti muutokset kosteudessa, josta keskiarvoa lasketaan. Tämä helpottaa ohjausjärjestelmän käyttöä.

Yksi digitaalisista tuloista voidaan konfiguroida antamaan digitaalinen lähtö, joka voi antaa hälytyssignaalin lukeman ollessa pieni tai suuri. Tätä voidaan käyttää suuren kosteuden hälytyksen antoon tai vaihtoehtoisesti merkinantona käyttäjälle, että säiliö on täytettävä.

Hydronix-anturit on erityisesti suunniteltu sopivia materiaaleja käyttäen toimimaan luotettavasti vuosia vaativimmissakin olosuhteissa. Anturin altistamista turhaan iskuvaurioille kannattaa kuitenkin välttää, kuten minkä tahansa elektronisen laitteen. Kiinnitä erityistä huomiota keraamiseen etulevyyn, joka on erittäin hyvästä kulumiskestävyydestään huolimatta hauras ja voi vaurioitua suorasta iskusta.

VAROITUS – ÄLÄ ALTISTA KERAAMISTA LEVYÄ ISKUILLE

Anturin oikeasta asennuksesta on huolehdittava siten, että materiaalista saadut näytteet ovat edustavia. On tärkeää, että anturi asennetaan, paikkaan, jossa keraaminen etulevy on kokonaan materiaalin päävirtauksessa. Sitä ei saa asentaa liikkumattomaan materiaaliin eikä paikkaan, jossa materiaalia voi kasaantua anturiin.

Kaikki Hydronix-anturit on kalibroitu valmiiksi tehtaalla siten, että lukema on 0 ilmassa ja 100 upotettuna veteen. Tätä kutsutaan "skaalaamattomaksi lukemaksi", ja se on perusarvona kalibroitaessa anturia mitattavaa materiaalia varten. Tämän ansiosta anturien toiminta on vakioitua, joten jos anturi vaihdetaan, materiaalin kalibrointia ei tarvitse tehdä uudelleen.

Asennuksen jälkeen anturi on kalibroitava materiaalin mukaan (lisätietoja on kohdassa Luku 3). Anturin asetukset voi määrittää kahdella tavalla:

- *Kalibrointi anturin sisäisesti:* Anturi kalibroidaan sisäisesti, ja se antaa tuloksena todellisen kosteuden.
- *Kalibrointi ohjausjärjestelmässä*: Anturi antaa tulokseksi skaalaamattoman lukeman, joka on suhteessa kosteuteen. Kalibrointitiedot ohjausjärjestelmän sisällä muuntavat tämän todelliseksi kosteudeksi.

2 Mittaustekniikat

Anturi käyttää Hydronixin ainutlaatuista digitaalista mikroaaltotekniikkaa, joka antaa analogisia tekniikoita herkemmät mittaustulokset. Tämä tekniikka mahdollistaa valinnan useiden mittaustapojen välillä (ei käytettävissä kaikissa antureissa – tekniset tiedot ovat kunkin anturin asennusoppaassa). Oletustapa on tapa F, joka soveltuu kaikille materiaaleille, mutta erityisen hyvin hiekalle ja betonin runkoaineelle. Jos haluat lisätietoja tavan valitsemisesta, ota yhteyttä Hydronixiin: support@Hydronix.com.

3 Anturin yhdistäminen ja konfigurointi

Kosteusanturin voi konfiguroida etätoimintona käyttämällä digitaalista sarjalähtöä sekä tietokonetta, jossa on anturin konfigurointi- ja kalibrointiohjelmisto Hydro-Com. Tietokoneyhteyttä varten Hydronix toimittaa RS232-485-muuntimet tai USB-anturiliitäntämoduulin (katso käyttöopas HD0303).

Huomautus: Kaikki tämän käyttöoppaan viittaukset Hydro-Com-ohjelmistoon viittaavat ohjelmiston versioon 2.0.0 ja sitä uudempiin versioihin. Anturin voi konfiguroida käyttämällä vanhempia Hydro-Com-versioita, mutta jotkin toiminnot eivät silloin ole käytettävissä. Lisätietoja on Hydro-Com-ohjelmiston käyttöoppaassa.

Anturin eräohjausjärjestelmään yhdistämistä varten on kaksi peruskonfiguraatiota:

- Analoginen lähtö tasavirtalähtö voidaan konfiguroida seuraaviksi lähdöiksi:
 - 4–20 mA
 - 0–20 mA
 - 0–10 V:n lähdön voi toteuttaa käyttämällä 500 ohmin vastusta, joka toimitetaan anturikaapelin mukana.
- Digitaalinen RS485-sarjaliitäntä tekee mahdolliseksi suoran ohjaustietojen ja muiden tietojen vaihdon anturin ja laitoksen ohjaustietokoneen välillä. Myös USB- ja Ethernetsovitinvaihtoehdot ovat saatavilla.

Anturin voi konfiguroida antamaan lähtöön lineaarisia skaalaamattomia arvoja väliltä 0–100 yksikköä siten, että materiaalikalibrointi tehdään ohjausjärjestelmässä. Anturin voi myös kalibroida sisäisesti niin, että se antaa tulokseksi todellisen kosteusarvon.

Kuva 1: Anturin yhdistäminen (yleiskuvaus)

1 Anturin konfigurointi

Hydronix-mikroaaltokosteusanturissa on useita sisäisiä parametreja, joiden avulla anturin voi optimoida tiettyä käyttötarkoitusta varten. Näitä asetuksia voi tarkastella ja muuttaa Hydro-Com-ohjelmiston avulla. Kaikkien asetusten tiedot ovat Hydro-Comin käyttöoppaassa (Hydro-Comin käyttöopas HD0682).

Sekä Hydro-Com-ohjelmisto että sen käyttöopas ovat ladattavissa maksutta osoitteesta www.hydronix.com.

Kaikki Hydronix-anturit toimivat samalla periaatteella ja käyttävät samoja konfigurointiparametreja. Kaikki toiminnot eivät kuitenkaan ole käytössä kaikissa anturien käyttösovellutuksissa. (Esimerkiksi keskiarvoparametreja käytetään tavallisesti eräprosesseissa.)

2 Analogisen lähdön asetukset

Kahden silmukkalähdön toiminta-alueen voi konfiguroida sen laitteen mukaan, johon anturi on liitetty. Esimerkiksi PLC voi edellyttää, että toiminta-alue on 4–20 mA tai 0–10 V DC. Lähdöt voidaan myös konfiguroida kuvaamaan anturin muodostamia eri lukemia, kuten kosteutta tai lämpötilaa.

Kuva 2 voi olla apuna valittaessa oikeaa analogisen lähdön muuttujaa tietylle järjestelmälle.

*Keskiarvo kannattaisi tässä tapauksessa laskea ohjausjärjestelmässä

Kuva 2: Lähtömuuttujan määrittämisen ohje

2.1 Lähtötyyppi

Tämä määrittää analogisten lähtöjen tyypin. Vaihtoehtoja on kolme:

- 0–20 mA: Tämä on tehtaalla asetettu oletusarvo. 500 ohmin tarkkuusvastuksen lisääminen muuntaa 0–20 mA:n alueen 0–10 V DC:n alueeksi.
- 4–20 mA.

2.2 Lähtömuuttujat 1 ja 2

Nämä määrittävät, mitä anturilukemia analoginen lähtö kuvaa. Vaihtoehtoja on kymmenen.

2.2.1 Raaka skaalaam.

Tämä on raaka skaalaamaton muuttuja. Raaka skaalaam. -arvo 0 on lukema ilmassa ja 100 on sama kuin lukema vedessä. Koska tälle muuttujalle ei käytetä suodatusta, sitä ei tule käyttää prosessinohjauksessa. Tätä lähtöä voi käyttää lokitarkoituksiin anturin alustavan asennuksen aikana.

2.2.2 Raaka skaalaam. 2

Tämä muuttujan ollessa asetettuna lähdölle käytetään anturille konfiguroitua vaihtoehtoista mittaustapaa (lisätietoja vaihtoehtoisista mittaustavoista on luvun 2 osassa 8). Suodatusta ei käytetä.

Huomautus: Tämä tila ei ole käytettävissä kaikissa antureissa. Lisätietoja on teknisissä tiedoissa kunkin anturin asennusoppaassa.

2.2.3 Suodat. skaalaamaton

Suodat. skaalaamaton on suhteellinen kosteuslukema 0–100. Skaalamaaton arvo 0 on sama kuin lukema ilmassa ja 100 sama kuin lukema vedessä.

2.2.4 Suodat. skaalaamaton 2

Suodat. skaalaamaton 2 käyttää toista anturille konfiguroitua mittaustilaa.

Huomautus: Tämä tila ei ole käytettävissä kaikissa antureissa. Lisätietoja on teknisissä tiedoissa kunkin anturin asennusoppaassa.

2.2.5 Keskim. skaalaamaton

Tämä on Raaka skaalaam. -muuttuja, joka käsitellään erän keskiarvon laskennassa keskiarvoparametreja käyttäen. Keskimääräisen lukeman saamiseksi digitaaliseksi tuloksi on määritettävä Keskim./pito. Kun tämä digitaalinen tulo aktivoidaan, Raaka skaalaam. -lukemista lasketaan keskiarvo. Kun digitaalinen tulo on matala, tämä keskiarvo pidetään vakiona.

2.2.6 Suodatettu kosteus-%

Suodatettu kosteus-% skaalataan käyttämällä Suodat. skaalaamaton -arvoa sekä A-, B-, C- ja SSD-kertoimia.

Suodatettu kosteus-% = A x $(F.U/S)^2$ + B x (F.U/S) + C – SSD

Nämä kertoimet johdetaan pelkästään materiaalin kalibroinnista. Näin ollen kosteustuloksen tarkkuus riippuu kalibroinnin tarkkuudesta.

SSD-kerroin on käytössä olevan materiaalin Kyllästetty pintakuiva (Saturated Surface Dry) -poikkeama (veden adsorptioarvo), ja se sallii näytetyn kosteusprosenttilukeman ilmaisemisen vain (vapaasta) pintakosteudesta.

2.2.7 Raakakosteus-%

Tämä on Raakakosteus-%-muuttuja ilman mitään suodatusta tai keskiarvon laskemista. Koska suodatusta ei ole käytetty, tämän muuttujan käyttöä prosessinohjauksessa ei suositella.

2.2.8 Keskim. kosteus-%

Tämä on Raakakosteus-%-muuttuja, joka käsitellään erän keskiarvon laskennassa keskiarvoparametreja käyttäen. Keskimääräisen lukeman saamiseksi digitaaliseksi tuloksi on määritettävä Keskim./pito. Kun digitaalinen tulo kytketään korkeaksi, Raakakosteus-lukemista lasketaan keskiarvo. Kun digitaalisen tulon lukema on matala, keskiarvo pidetään vakiona.

2.2.9 Brix

Tämä on arvo, jonka voi kalibroida suhteelliseksi materiaalin Brix-sisältöön. Tällaisissa tapauksissa anturi on kalibroitava materiaalin mukaan. Kalibroinnissa on määritettävä anturin skaalaamattomien lukemien ja materiaalin Brix-arvon välinen suhde.

Huomautus: Tämä lähtö ei ole käytettävissä kaikissa antureissa. Lisätietoja on teknisissä tiedoissa kunkin anturin asennusoppaassa.

2.2.10 Lämpötila

Kaikissa antureissa Hydro-Mix HT (HMHT) -anturia lukuun ottamatta analogisen lähdön lämpötila-asteikko on kiinteä – nolla-arvo (0 tai 4 mA) vastaa lämpötilaa 0 °C ja täysi lukema (20 mA) lämpötilaa 100 °C.

Hydro-Mix HT (HMHT) -anturissa on kiinteä lähtö 0–150 °C – nolla-arvo (0 tai 4 mA) vastaa lämpötilaa 0 °C ja täysi lukema (20mA) lämpötilaa 150 °C (koskee vain laiteohjelmaversiota HS0102 v1.07 ja uudempia).

2.3 Ala-% ja Ylä-%

Nämä kaksi arvoa määrittävät kosteusalueen, kun lähtömuuttujaksi asetetaan Suodatettu kosteus-% tai Keskim. kosteus-%. Oletusarvot ovat 0 % ja 20 %, jossa:

0–20 mA 0 mA vastaa arvoa 0 % ja 20 mA vastaa arvoa 20 %

4–20 mA 4 mA vastaa arvoa 0 % ja 20 mA vastaa arvoa 20 %

Nämä rajoitukset määritetään koko kosteusalueelle, ja ne on sovitettava kosteusmuunnoksen mA-arvoon eräohjaimessa.

3 Digitaalisten tulojen/lähtöjen asetukset

3.1 Tulojen ja lähtöjen asetukset

Anturissa on kaksi digitaalista tuloa. Toisen niistä voi konfiguroida myös lähdöksi.

Tietoja yhdistämisestä on sähköasennusoppaassa HD0678.

Ensimmäisen digitaalisen tulon voi määrittää seuraaviksi:

Käyttämätön: Tulon tila ohitetaan.

Keskim./pito: Tätä käytetään käynnistys- ja pysäytysjakson hallintaan erän keskiarvon laskennassa. Kun tulosignaali aktivoidaan ja kun viive on määritetty Keskim. pito/viive -parametrilla, Raaka- tai Skaalamaton-arvojen (katso keskiarvotilaa koskeva osa 4.3) laskeminen aloitetaan. Kun tulon aktivointi sitten poistetaan, keskiarvon laskeminen pysäytetään, ja keskiarvo pidetään vakiona, jotta eräohjain-PLC voi lukea sen. Kun tulosignaali aktivoidaan uudelleen, keskiarvon nollataan, ja keskiarvon laskeminen alkaa uudelleen.

Kosteus/lämpötila:	Tämän avulla käyttäjä voi vaihtaa analogisen tulon Skaalaamaton- tai Kosteus-mittausten (sen mukaan, kumpi on määritetty) ja lämpötilamittausten välillä. Tätä käytetään, kun tarvitaan lämpötilalähtöä vain yhden analogisen lähdön ollessa käytössä. Kun tulo ei ole aktiivinen, analoginen lähtö ilmaisee oikean kosteusmuuttujan (skaalaamaton tai kosteus). Kun tulo aktivoidaan, analoginen lähtö ilmaisee materiaalin lämpötilan (celsiusasteina).		
	Analogisen lähdön lämpötilaskaalaus on kiinteä – nolla-arvo (0 tai 4 mA) vastaa lämpötilaa 0 °C ja täysi lukema (20 mA) lämpötilaa 100 °C.		
Sekoittimen synkronoin	ti: Uusi synkronoitu mittausjakso alkaa, kun tulo aktivoituu.		
Toisen digitaalisen tul määrittää myös seuraav	lon/lähdön voi määrittää Kosteus/lämpötila-tuloksi, mutta sen voi <i>v</i> iksi lähdöiksi:		
Säiliö tyhjä:	Tämä tulo aktivoituu, jos Skaalaamaton- tai Kosteus-arvot alittavat Keskiarvo-osassa määritetyt alarajat. Tämän avulla voidaan antaa käyttäjälle signaali, kun anturi on ilmassa (koska anturin arvo muuttuu nollaksi ilmassa), ja ilmaista astian olevan tyhjä.		
Tiedot arvoalueen ulkopuolella:	Lähtö aktivoituu, jos kosteuslukema ylittää tai alittaa kosteuden raja- arvot tai jos Skaalaamaton-arvo ylittää Skaalaamaton-raja-arvot.		
Anturi OK:	Tämä lähtö on aktiivinen seuraavissa tilanteissa:		
	 Taajuuslukema on määritettyjen ilman ja veden kalibrointi- pisteiden välillä +/– 3 %. 		
	 Amplitudilukema on määritettyjen ilman ja veden kalibrointi- pisteiden välillä +/– 3 %. 		
	 Sisäisen elektroniikan lämpötila on turvallisen käyttörajan alapuolella. 		
	 RF-resonaattorin lämpötila on turvallisen käyttörajan yläpuolella. 		
	Sisäinen tulojännite on sallitulla alueella.		
Materiaalin lämpötilan hälytys:	Hälytys on aktiivinen, jos materiaalin lämpiötila on määritettyjen ylä- ja alarajojen ulkopuolella.		
Kalibrointi on arvoalueen			
	yli 3 pistettä kalibroinnissa käytettyjen Skaalaamaton-arvojen arvoalueen yli tai alle. Tämän avulla voidaan ilmaista, että toisen kalibrointipisteen voi tehdä tai se pitäisi tehdä.		
Autojäljitys vakaa:	Autojäljitys vakaa ilmaisee, onko anturin lukema vakaa. Vakaus määritetään tietyn tietopisteiden määrän poikkeamana. Sekä poikkeama-arvo että käytettyjen tietojen määrä sekunteina ovat konfiguroitavissa anturissa. Lähtö on aktiivinen, jos Autojäljityksen poikkeama on alle Autojäljityksen poikkeama -raja-arvon.		
Suodatin sisältää:	Suodattimen sisällyttämistä käytetään ohjaamaan, milloin signaalisuodattimia käytetään Raw-signaaleihin. Kun tulo on aktiivinen, signaalisuodattimia käytetään Raw-signaaleihin. Kun tulo on deaktivoitu, viimeksi suodatettua arvoa pidetään vakiona. Kun tulo aktivoidaan uudelleen, suodatus alkaa aiemmin pidetystä arvosta.		
Keskimääräinen pito:	Ensimmäisen digitaalitulon kopio.		

3.2 Tulojen/lähdön konfigurointiasetukset

3.2.1 Yläraja ja Alaraja (hälytykset)

Sekä Yläraja- että Alaraja-arvon voi määrittää sekä kosteusprosentille että anturin Skaalamaton-arvolle. Nämä kaksi parametria eivät ole riippuvaisia toisistaan. Säiliö tyhjä -lähtö aktivoituu, kun lukema on alle Alaraja-arvon. Tiedoissa virhe -lähtö aktivoituu, kun lukema on yli Yläraja-arvon tai alle Alaraja-arvon.

3.2.2 Materiaalin lämpötilan Yläraja ja Alaraja (hälytys)

Materiaalin Yläraja- ja Alaraja-määrityksiä käytetään Materiaalin lämpötila -hälytyksen konfigurointiin. Jos Digitaaliseen tuloon/lähtöön 2 määritetään Materiaalin lämpötila -hälytys, lähtö aktivoituu, jos materiaalin lämpötila-anturin lukema ylittää ylärajan tai alittaa alarajan.

3.2.3 Autojäljityksen poikkeaman raja

Autojäljityksen poikkeaman raja -määritystä käytetään alle Autojäljitys vakaa -hälytyksen konfigurointiin. Konfiguroituna lähtö aktivoituu, jos Suodat. skaalaamaton -lukeman poikkeama alittaa tämän raja-arvon.

3.2.4 Autojäljityksen aika

Autojäljityksen aika määrittää tietojen määrän (sekunteina), josta lasketaan keskiarvo autojäljityksen poikkeaman laskemista varten.

3.2.5 Hälytystapa

Määrittää, mitä mittaustapaa (tila F, tila V, tila E tai vanha) käytetään hälytysarvojen laskentaan. Hälytystapa on käytettävissä vain antureissa, joissa on usean mittaustilan mahdollisuus. Määrityksen jälkeen anturi laskee arvot vain valittua mittaustapaa käyttäen. Hälytystapa määrittää myös, mitä tapaa käytetään laskettaessa autojäljityksen arvot.

4 Keskiarvoparametrit

Keskiarvojen laskemisen aikana anturi käyttää laskennassa Raaka- tai Suodat. skaalaamaton arvoa (käyttäjän konfiguroima). Seuraavat parametrit määrittävät, miten tietoja käsitellään erän keskiarvon laskennassa, kun käytetään digitaalista lähtöä tai keskiarvon etälaskentaa. Niitä ei tavallisesti käytetä jatkuville prosesseille.

4.1 Yläraja ja Alaraja

Sekä Yläraja- että Alaraja-arvon voi määrittää sekä kosteusprosentille että Skaalamatonarvolle. Nämä kaksi parametria eivät ole riippuvaisia toisistaan. Jos anturin lukema menee näiden rajojen ulkopuolelle anturin keskiarvon laskennan aikana, tiedot jätetään pois keskiarvon laskennasta.

Tämä konfiguroidaan käyttämällä tulon/lähdön konfiguroinnin Yläraja- ja Alarajamäärityksiä (osa 3.2.1).

4.2 Keskim. pito/viive

Kun anturia käytetään materiaalin kosteuden mittaamiseen ja se irrotetaan säiliöstä tai siilosta, erän aloittamista varten annetun ohjaussignaalin ja anturin yli kulkevan materiaalivirtauksen alkamisen välillä on usein pieni viive. Tämän ajan kosteuslukemat tulisi jättää pois erän keskiarvon laskennasta, koska ne eivät todennäköisesti ole edustavia staattisia mittauksia. Keskim. pito/viive -arvo määrittää tämän alusta pois jätettävän ajan keston. Useimmissa käyttökohteissa 0,5 sekuntia on riittävä aika, mutta joskus tätä arvoa voi olla tarpeen kasvattaa. Vaihtoehtoja ovat seuraavat: 0, 0,5, 1, 1,5, 2 ja 5 sekuntia.

4.3 Keskiarvotila

Määrittää keskiarvon laskennassa käytettävän keskiarvotilan. Mahdollisia tiloja ovat Raaka (Skaalaamaton/Kosteus) ja Suodatettu (Skaalaamaton/Kosteus). Käyttökohteissa, jossa lukemaan vaikuttaa anturin yli kulkee mekaaninen laite, kuten sekoittimen lavat tai ruuvit, voit poistaa signaalista piikit ja aallonpohjat käyttämällä Suodatettu-arvoa. Jos materiaalivirtaus on vakaa, kuten mitattaessa lähtöä siilosta, keskiarvon laskentatilaksi tulisi määrittää Raaka.

5 Suodatus

Voit katsoa oletussuodatusasetukset kyseessä olevan anturin oletusasetuksia koskevista teknisistä tiedoista. Lisätietoja on kohdassa Liite A Asiakirjaviittaukset.

Raaka skaalaam. -lukema mitataan 25 kertaa sekunnissa, ja signaalissa voi olla merkittävää epäsäännöllisyyksistä johtuvaa kohinaa materiaalin virratessa. Tämän vuoksi signaalia on suodatettava, jotta siitä tulee käyttökelpoinen kosteuden ohjaukseen.

Oletussuodatusasetukset soveltuvat useimpiin käyttökohteisiin, mutta niitä voi tarvittaessa mukauttaa käyttökohteeseen sopiviksi.

Kaikkiin käyttökohteisiin soveltuvia oletussuodatusasetuksia ei voida kehittää, koska käyttökohteiden ominaisuudet vaihtelevat. Ihanteellinen suodatin on sellainen, joka tuottaa tasaiset tulokset nopealla vasteella.

Raakakosteus-%- ja Raaka skaalaam. -asetuksia ei pidä käyttää ohjaustarkoituksiin.

Suodattimet käsittelevät Raaka skaalam. -lukeman seuraavassa järjestyksessä: ensin suodatuksen voimakkuuden suodattimet rajaavat signaalin askelmuutoksia, sitten digitaalisen signaalinkäsittelyn suodattimet poistavat signaalista korkeataajuisen kohinan ja lopulta tasaussuodatin (määritetään Suodatusaika-funktiolla) tasaa koko taajuusalueen.

Seuraavassa on suodattimien tarkat kuvaukset.

5.1 Suod. voimakk. -suodattimet

Suod. voimakk. -suodattimet ovat käteviä mekaanisen laitteen tuoman häiriön prosessiin aiheuttamien suurten piikkien ja aallonpohjien leikkaamiseen anturin lukemasta.

Suodattimet määrittävät nopeusrajat suurille positiivisille ja negatiivisille muutoksille raakasignaalissa. Rajat voi määrittää positiivisille ja negatiivisille muutoksille erikseen. Vaihtoehtoja ovat seuraavat: Ei mitään, Kevyt, Normaali ja Raskas. Mitä raskaammat asetukset ovat, sitä enemmän signaalia leikataan ja sitä hitaampi signaalin vaste on.

5.2 Digitaalinen signaalinkäsittely

Digitaalisen signaalinkäsittelyn (DSP) suodattimet poistavat signaalista ylimääräistä kohinaa kehittyneellä algoritmilla. Suodatin vähentää korkeataajuista kohinaa. Tämän suodattimen etuna on, että DSP-suodatin käsittelee kaikkia merkityksellisellä taajuusalueella olevia signaaleja kelvollisina. Tuloksena ja on tasainen signaali, joka reagoi nopeasti kosteuden muutoksiin.

DSP-suodattimet ovat erityisen käytännöllisiä paljon kohinaa aiheuttavissa käyttökohteissa, kuten sekoituksessa. Ne eivät sovellus niin hyvin vähän kohinaa aiheuttaviin ympäristöihin.

Vaihtoehtoja ovat seuraavat: Ei mitään, Hyvin kevyt, Kevyt, Normaali, Raskas ja Hyvin raskas.

5.3 Suodatusaika (tasausaika)

Suodatusaika tasoittaa signaalin, kun se on ensin läpäissyt Suod. voimakk. -suodattimet ja DSP-suodattimet. Tämä suodatin tasoittaa koko signaalin ja siksi hidastaa signaalin vastetta. Suodatusaika määritetään sekunteina.

Vaihtoehtoja ovat seuraavat: 0, 1, 2,5, 5, 7,5, 10 ja mukautettu aika 100 sekuntiin asti.

5.4 Suodattimen sisällytys

Kun tämä on määritetty, suodatettuun tulokseen sisällytetään vain määritetyn pisteen ylittävät Skaalaamaton-arvot. Määrittämällä pienen arvon voit sisällyttää kaikki mittaukset. Oletusarvo on –5.

Kuva 3: Raaka- ja Suodattimen sisällytys -anturitulos

6 Tyypillinen kosteusjäljitys Hydronix-kosteusanturista virtaavassa materiaalissa

Kuva 4 on tyypillinen Raaka skaalaam. -jäljitys virtaavasta materiaalista. Signaali on epäjohdonmukainen anturin ohi virtaavan materiaalin liikkeiden vuoksi.

Kuva 4: Raaka skaalaam. -kosteusjäljitys virtaavassa materiaalissa

Positiiviset piikit ja negatiiviset aallonpohjat voidaan leikata käyttämällä ei-toivottua kohinaa vähentäviä Suod. voimakk. -suodattimia. Kun signaali on läpäissyt Suod. voimakk. -suodattimet ja (jos valittu) DSP-suodattimen, sitä tasataan lisää käyttämällä Suodatusaika-määritystä (tasausaika). Tuloksena on paljon selkeämpi kuvaus materiaalin kosteudesta (Kuva 5).

Kuva 5: Suodatettua signaalia esittävä kuvaaja

7 Signaalin suodattaminen sekoitinkäyttökohteessa

Sekoittimen lapojen aiheuttaman suuren kohinan vuoksi signaalia on suodatettava, jotta siitä tulee käyttökelpoinen kosteuden ohjaukseen. Oletusasetukset soveltuvat useimpiin käyttökohteisiin, mutta niitä voi tarvittaessa mukauttaa.

Kaikille sekoittimille soveltuvia oletussuodatusasetuksia ei voida kehittää, koska kullakin sekoittimella on erilaiset sekoitustoiminnot. Ihanteellinen suodatin on sellainen, joka tuottaa tasaiset tulokset nopealla vasteella.

Kuva 6 on tyypillinen kosteuskäyrä betonin eräjakson aikana. Sekoitin on aluksi tyhjä, ja kun materiaalia lisätään, tulos nousee vakaaseen arvoon pisteessä A. Sitten lisätään vettä, ja signaali nousee ja vakautuu pisteessä B. Erä tulee valmiiksi ja materiaali poistetaan. Vakaus pisteiden A ja B lukemissa merkitsee, että kaikki sekoittimessa olevat ainesosat ovat sekoittuneet homogeenisesti.

Kuva 6: Tyypillinen kosteuskäyrä

Vakausasteella pisteissä A ja B voi olla suuri vaikutus tarkkuuteen ja toistettavuuteen. Useimmat automaattiset vedenohjaimet mittaavat kuivakosteutta ja laskevat, kuinka paljon vettä seokseen on lisättävä tietyn reseptin tunnetun loppuvertailuarvon perusteella. Jakson kuivaseosvaiheessa pisteessä A on tärkeää olla vakaa signaali. Näin vedenohjain voi edustavan lukeman avulla tehdä tarkan laskelman tarvittavasta lisättävän veden määrästä. Samasta syystä vakaus seoksen kosteassa päässä (piste B) antaa edustavan hyvää seosta osoittavan loppuvertailuarvon reseptiä kalibroitaessa.

Kuva 7 näyttää Raaka skaalaam. -tiedot, jotka on tallennettu anturista todellisen sekoitusjakson aikana. Niissä näkyvät selvästi sekoituslapojen toiminnan aiheuttamat piikit ja aallonpohjat.

Kuva 7: Kuvaaja, joka esittää raakasignaalia sekoitusjakson aikana

Seuraavat kaksi kuvaajaa esittävät suodatukset vaikutusta samoihin raakatietoihin. Kuva 8 näyttää, mikä vaikutus seuraavien suodatusasetusten käytöllä on. Nämä asetukset luovat kuvaajaan Suodat. skaalaamaton -viivan.

Suod. voimakk. +	=	Normaali
Suod. voimakk. –	=	Kevyt
Suodatusaika	=	1 sekunti

Kuva 8: Raaka skaalaam. -signaalin suodatus (1)

Kuva 9 esittää seuraavien asetusten vaikutusta:

Suod. voimakk. +	=	Kevyt
Suod. voimakk. –	=	Kevyt
Suodatusaika	=	7,5 sekuntia

Kuva 9: Raakasignaalin suodatus (2)

Kohdasta Kuva 9 ilmenee, että sekoitusjakson kuivavaiheessa signaali on vakaampi, mistä on etua tehtäessä vesikalibrointia.

Oletussuodatusasetukset soveltuvat moniin käyttökohteisiin. Optimaalisten asetusten määrittämiseksi kannattaa kuitenkin seurata tuloksia alustavan käytön aikana kohinan vaimennuksen ja vasteajan tasapainottamiseksi.

8 Mittaustilat

Mittaustilojen avulla anturin herkkyyden voi optimoida materiaalin mukaan.

Mittaustilojen valinta ei ole käytettävissä kaikissa antureissa, ja eri malleissa on erilaiset mittaustilan oletusasetukset. Lisätietoja on teknisten tietojen osassa kunkin anturin asennusoppaassa.

Käytettävissä voi olla enintään kolme mittaustilaa: tila F, tila V ja tila E.

Sopivimman tilan valinta voi parantaa lukeman tarkkuutta, mutta rajoittaa korkeinta kosteusarvoa, jonka anturi voi mitata.

Anturi laskee jatkuvasti Skaalaamaton-arvoa kussakin käytettävissä olevista tiloista (F, V ja E). On tärkeää tiedostaa, että anturi ei toimi vain jossakin tietyssä tilassa, vaan koko ajan kaikissa tiloissa. Mitä tahansa materiaalia tai prosessia varten on olemassa paras mahdollinen käyttötila, jonka käyttäjä voi valita.

8.1 Käytettävän mittaustilan valinta

Sopivimpaan käyttötilaan vaikuttavat käyttäjän asettamat vaatimukset, käyttökohde sekä mitattava materiaali.

Tarkkuus, vakaus ja tiheyden muutokset sekä toiminnan kosteusalue ovat kaikki tekijöitä, jotka voivat vaikuttaa mittaustilan valintaan.

Tilaa F käytetään usein sellaisiin käyttökohteisiin kuin virtaava hiekka, betonin runkoaineiden ja betonisekoittimet. Tila F soveltuu myös Brix-mittauksiin.

Tiloja V ja E käytetään usein pienitiheyksisille materiaaleille, kuten viljalle ja muille orgaanisille materiaaleille. Niitä käytetään myös materiaaleille, joilla on kosteussisällön mukaan vaihteleva perustiheys. Tilat V ja E voivat myös sopia intensiivisiin sekoituskohteisiin, jossa materiaalin tiheys on suuri, sekä muihin sekoituskohteisiin, jossa on huomattavia muutoksia ajan kuluessa (mukaan lukien runkoaineet ja betoni).

Tavoitteena on valita tekniikka, joka antaa parhaan (usein tasaisimman) signaalivasteen ja tarkimmat kosteusmäärityksen.

8.2 Eri tilojen valinnan vaikutukset

Kukin tila antaa erilaisen anturin Skaalaamaton-arvojen (0–100) ja kosteusprosentin välisen suhteen.

Mitattaessa missä tahansa materiaalissa on yleensä eduksi, jos suuri muutos anturin Skaalaamaton-mittauksessa tarkoittaa pientä muutosta kosteustasoissa. Näin saadaan tarkin kalibroitu kosteusmittaus (katso Kuva 10). Näin on sillä oletuksella, että anturi kykenee edelleen mittaamaan koko tarvittavalla kosteusalueella ja että anturia ei konfiguroida epäkäytännöllisen yliherkäksi.

Kaikki tilat antavat lineaarisen vakaan tuloksen. Tavoitteena on valita tila, joka näyttää tasaisimman kosteudenkalibrointiviivan, kuten viiva B kuvassa Kuva 10. Huomaa, että vaikka viiva B on tarkempi, 100 Skaalaamaton-yksikön enimmäisarvon voi saavuttaa pienemmällä kosteusprosentilla kuin mitattavan materiaalin oletettu enimmäiskosteus. Tarkka suurin saavutettavissa oleva kosteusprosentti on materiaalikalibroinnin gradientin funktio, joka käyttäjän on määritettävä.

Kuva 10: Skaalaamaton-arvojen ja kosteuden suhde

Sopivimman tilan selvittämiseksi on suositeltavaa suorittaa kokeita tietylle materiaalille, sekoitintyypille tai käyttökohteelle. Ennen tätä kannattaa ottaa yhteyttä Hydronixiin ja kysyä suositusasetuksia kyseistä käyttökohdetta varten.

Kokeet ovat erilaisia eri käyttökohteille. Ajan kuluessa tehtävälle mittaukselle on suositeltavaa tallentaa anturin tulos kustakin eri mittaustilasta samassa prosessissa. Tiedot voi tallentaa helposti käyttämällä tietokonetta ja Hydronix Hydro-Com -ohjelmistoa. Tulokset voi sitten esittää kuvana sopivimman mittaustilan selvittämiseksi.

Anturin suodatusanalyysiä tai muuta lisäanalyysiä varten Hydronix voi tarjota neuvojen lisäksi ohjelmiston, jonka avulla kokenut käyttäjä saa parhaat mahdolliset asetukset anturille.

Hydro-Com-ohjelmisto ja sen käyttöopas ovat ladattavissa osoitteesta www.hydronix.com.

Kun anturia käytetään sellaisen lähtösignaalin saamiseen, joka on kalibroitu kosteuden mukaan (absoluuttinen kosteusmittaus), kalibrointi on suositeltavaa tehdä käyttämällä eri mittaustiloja ja vertailemalla sitten tuloksia (lisätietoja on kohdassa Luku 3).

Lisätietoja saat Hydronixin tuelta osoitteessa support@hydronix.com.

9 Anturin tietojen lähdöt

Anturi tuottaa koko ajan tiedot kaikkia käytettävissä olevia tiloja varten, joten käytettävän tilan valinta tehdään, kun lähtömuuttuja valitaan. Tämä kuuluu nyt anturitoiminnon optimointiin mitattavalle materiaalille.

Seuraavassa kuvassa näkyy tietojen järjestely anturissa:

Kuva 11: Tietojen järjestely anturissa

9.1 Analogiset virtasilmukat

Jos tietojen lähdöissä on tarkoitus käyttää analogista virtasilmukkaa, käyttäjän on Skaalaamaton- tai Kosteus-lähdön valinnan lisäksi valittava käytettävä tila. Esimerkiksi analogiseksi lähdöksi 1 voidaan määrittää siis "Suodatettu skaalaam. tila F" tai "Keskim. kosteus tila E".

9.2 RS485-protokolla

Hydronix Hydro-Link -protokollaa on laajennettu niin, että se sallii eri tilojen tietojen pyytämisen. Käyttämällä laajennettua protokollaa isäntä voi tehdä esimerkiksi pyynnön "Keskim. skaalaamaton tila V" tai "Suodatettu skaalaam. tila E". Protokollan täydet tekniset tiedot saa pyydettäessä Hydronixilta, jos käyttäjä haluaa käyttää Hydro-Link-protokollaa ohjausjärjestelmässä.

9.3 Yhteensopivuus vanhempien isäntäjärjestelmien kanssa

Uusia isäntäjärjestelmätoteutuksia varten edellä kuvattu skeema (Kuva 11) antaa parhaan mahdollisen suorituskyvyn ja joustavuuden parhaan tilan selvittämiseksi ja valitsemiseksi materiaalille. Mahdollisten uusien toteutusten on suositeltavaa tukea tätä skeemaa.

Monet anturit tullaan liittämään vanhempiin järjestelmiin, ja skeemaan on tehty lisäyksiä näiden tukemiseksi ja yhteensopivuuden turvaamiseksi. Nämä vanhemmat anturit toimivat yhdessä, valmiiksi Skaalaamaton 1 -tyyppi -parametrilla määritetyssä tilassa. Ne tukivat myös vain yhtä A-, B-, C- ja D-kalibrointikertoimien joukkoa.

HS0102-laiteohjelmistoa käyttävissä antureissa on toteutettu hieman laajennettu skeema, jotta yhteensopivuus vanhempien laitteiden kanssa säilyy. Jos virtasilmukkamuuttujan määritys tai Hydro-Link-protokollan pyyntö tehdään määrittämättä tilaa (kuten vanhemmissa isäntäjärjestelmissä tapahtuisi), Skaalaamaton 1 -tyyppi -asetus tulee voimaan. Lähdön tila valitaan Skaalaamaton 1 -tyyppi -asetuksen mukaan. Tämä laajentaa kaaviota seuraavasti:

Koska vanhemmat isäntäsovellukset eivät pystyneet kirjoittamaan A-, B-, C- ja D-kertoimia jokaiselle tilalle, tehtiin vielä yksi laajennus, joka tukee käytössä olevien isäntäjärjestelmien vanhojen tilojen kertoimien joukkoa. Tämä näkyy kaavion lopullisessa versiossa:

Jos virtasilmukkalähtö määritetään ilman tilamääritettä tai RS485-protokollapyyntö tehdään ilman tilamääritettä (kosteusarvoa varten), toiminta on seuraavanlainen:

- Jos vanhan järjestelmän kertoimet poikkeavat nollasta, niitä käytetään kosteusarvon laskemiseen (punaiset nuolet kaaviossa).
- Jos vanhan järjestelmän kertoimet ovat kaikki nollia, oikeat kertoimet ja kosteus valitaan Skaalaamaton 1 -tyyppi -määrityksen perusteella (vihreät nuolet). Tämän ansiosta anturi voidaan täysin kalibroida uudessa isäntäjärjestelmässä käyttäen kaikkia tiloja sekä käyttää vanhassa isäntäjärjestelmässä.

9.4 Skaalaamaton 2

Vanhoissa anturituotteissa toteutettiin toinen Skaalamaton-laskenta, jonka avulla voitiin vertailla kahta tilaa samanaikaisesti. Näin voitiin tuottaa toisen tilan Skaalaamaton-lukemia, mutta ei Kosteus-lukemia. Skaalaamaton 2 on nyt toteutettu uusimmissa antureissa taaksepäin yhteensopivuutta varten, mutta koska nämä anturit laskevat kaikkia tiloja koko ajan, sitä ei tulisi käyttää uudessa isäntäjärjestelmätoteutuksessa.

Uusimmissa antureissa voi tehdä useita RS485-protokollapyyntöjä tilojen vertailua varten, ja eri tiloille voi määrittää kaksi analogista virtasilmukkalähtöä.

10 Toissijainen protokolla

Anturit, jotka käyttävät laiteohjelmistoa HS0102 v1.11.0 tai uudempaa, voivat kommunikoida Modbus RTU -protokollan avulla. Tämä on oletusarvoisen Hydro-Link RS485 -protokollan lisäksi. Samaa sähköliitäntää käytetään sekä Hydro-Link- että Modbus RTU -viesteissä; kuitenkin vain yhden tyyppistä protokollaviestiä voidaan käsitellä kerrallaan.

Toissijainen protokolla on määritetty erikseen, joten sillä voi olla erilaiset tiedonsiirtoasetukset kuin oletusprotokolla (osoite, tiedonsiirto ja pariteetti).

Lisätietoja Modbus-tietoliikennerekistereistä on osoitteessa: Hydronix Microwave Moisture Sensor Modbus RTU Protocol Register Mapping HD0881 (Hydronix-mikroaaltouunin kosteusanturi Modbus RTU Protocol Register Mapping HD0881)

10.1 Modbus-määritys

Jotta anturi voi hyväksyä Modbus RTU -komennot, toissijainen protokolla on aktivoitava ja tiedonsiirtoasetusten on vastattava ohjausjärjestelmän kokoonpanoa. Modbus RTU:n anturin konfiguroinnissa on käytettävä Hydro-Com-ohjelmistoa HS0099 v1.11.0 ja uudempia.

Määritysvaihtoehdot ja oletusarvot ovat seuraavat:

Määritysasetus	Oletus	Asetukset
Toissijainen protokolla	Modbus	Ei mitään Modbus
Baud	19200	2400 4800 9600 19200 38400 57600 115200
Osoite	1	1-247
Pariteetti	Ei mitään	Ei mitään 1 pysäytysbitti Ei mitään 2 pysäytysbittiä Pariton Parillinen

Taulukko 1: Modbus-määritys

Anturin integrointi ja materiaalikalibrointi

1 Anturin integrointi

Anturin voi integroida prosessiin kolmella eri tavalla:

• Anturin voi konfiguroida antamaan lähtöön lineaarisia skaalaamattomia arvoja väliltä 0–100 yksikköä siten, että materiaalikalibrointi tehdään ulkoisessa ohjausjärjestelmässä.

-tai-

• Anturi voidaan anturin konfigurointi- ja kalibrointiohjelmistoa Hydro-Com käyttämällä kalibroida sisäisesti antamaan lähtöön absoluuttinen kosteusprosenttiarvo.

-tai-

• Anturia voidaan käyttää myös kohdearvon antamiseksi lähtöön.

Hydronixilta on saatavilla ohjelmistonkehitystyökaluja järjestelmäsuunnittelijoille, jotka haluavat kehittää oman liittymän.

Täydet tiedot anturin integroimisesta ohjausjärjestelmään tai prosessiin on asiakirjassa EN0077 "Kosteuden ohjausmenetelmät eräkäsittelyssä".

2 Johdanto materiaalikalibrointiin

2.1 "Skaalaamaton" arvo

Valmistuksessa kukin anturi kalibroidaan erikseen hallitussa ympäristössä niin, että arvo nolla (0) vastaa mittausta ilmassa ja 100 mittausta vedessä. Tämän avulla annetaan Hydronixanturista väliltä 0–100 oleva raaka lähtöarvo, jota kutsutaan skaalaamattomaksi arvoksi.

2.2 Miksi pitää kalibroida?

Hydronixin mikroaaltokosteusanturit mittaavat materiaalin sähköisiä ominaisuuksia. Kullakin materiaalilla on omat sähköiset ominaisuutensa, ja siksi on suoritettava kalibrointi todellisen kosteuden/Brix-arvon saamiseksi. Kun materiaalin kosteus vaihtelee, anturi tunnistaa muutokset ja muuttaa Skaalamaton-arvoa sen mukaan. Koska kaikilla materiaaleilla on erilaiset sähköiset ominaisuudet, Skaalamaton-arvo tietyllä kosteusprosentilla on erilainen kullakin materiaalilla.

Kuva 14: Kalibroinnit kolmelle eri materiaalille esittää kolmen eri materiaalin kalibrointiviivan. Tästä voidaan nähdä, että Skaalaamaton-arvon ollessa kullakin materiaalilla 20 vastaava kosteusprosentti on erilainen. Materiaalilla A Skaalamaton-arvo 20 vastaa 15 prosentin kosteutta. Materiaalilla B sama Skaalamaton-arvo vastaa 10 prosentin kosteutta.

Kuva 14: Kalibroinnit kolmelle eri materiaalille

Luku 3

Anturin materiaalikalibrointi muuntaa korrelaation avulla Skaalamaton-arvon todelliseksi kosteudeksi (Kuva 15). Korrelaatio selvitetään mittaamalla materiaalin Skaalaamaton-arvo erilaisilla kosteuksilla tai Brix-sisällöillä ja keräämällä materiaalista näyte. Näytteen kosteus selvitetään tarkalla laboratorioprosessilla. Koko suositeltu prosessi on kuvattu yksityiskohtaisesti tässä käyttöoppaassa.

Anturin Skaalaamaton-arvo	Laboratorion kosteustulos
10	5
20	10
30	15
40	20

Kuva 15: Tyypilliset kalibrointitulokset

2.3 Materiaalin muutokset

On tärkeää asettaa anturi siten, että materiaalin virtaus on riittävä ja vakaa. Muutokset materiaalin koostumuksessa, kuten sekoitusten, tiheyden tai pakkautumisen muutokset, voivat aiheuttaa virheitä kalibrointiin. Neuvoja asennukseen on kunkin anturin asennusoppaassa.

Lisäohjeita tiettyjä käyttökohteita varten saat Hydronixin tuelta osoitteessa support@hydronix.com.

2.4 Kalibrointityypit

Hydronixin mikroaaltokosteusanturien kalibrointiin on useita eri tapoja.

Lineaarinen:

Kosteuden materiaalikalibrointi on tavallisesti lineaarinen, ja tämä kalibrointi on kuvattu sivulla 32. Kalibroinnissa käytetään seuraavaa yhtälöä:

Kosteus-% = **B** x (Skaalaamaton lukema) + **C** – **SSD**

Neliöllinen:

Harvinaisempia tapauksia varten, joissa materiaalin mittauksilla on epälineaarisia ominaisuuksia, voidaan käyttää neliöllistä funktiota, jossa kalibrointiyhtälössä on seuraavassa esitetty neliöllinen termi.

Kosteus-% = $A \times (Skaalaamaton \, lukema)^2 + B (Skaalaamaton \, lukema) + C - SSD$

Neliöllisen kertoimen (A) käyttö on tarpeen vain kompleksisissa käyttökohteissa. Useimmilla materiaaleilla kalibrointiviiva on lineaarinen, jolloin **A** asetetaan nollaksi.

Brix:

Tietyt anturit voidaan kalibroida Brix-mittausta varten (liuenneet kiinteät aineet). Brix-kalibroinnissa käytetään seuraavan yhtälön mukaista erilaista viivaa:

$$Brix = A - B. e^{(\frac{C.us}{100000})} + \frac{D. us^2}{1000}$$

Lisätietoja kalibroinnista ja käytettävän oikean kalibroinnin selvittämisestä saat Hydronixin tuesta osoitteesta support@hydronix.com.

3 SSD-kerroin ja SSD-kosteussisältö

Käytännössä on mahdollista saavuttaa kalibrointia varten vain uunikuivia kosteuden (kokonaiskosteuden) arvoja. Jos pintakosteussisältöä (vapaata kosteutta) tarvitaan, tähän on käytettävä Kyllästetty pintakuiva (Saturated Surface Dry, SSD) -kerrointa. Joillakin aloilla SSD-arvoa kutsutaan myös veden absorptioarvoksi (Water Absorption Value, WAV).

Imeytynyt kosteus + Vapaa kosteus = Kokonaiskosteus

Hydronixin menetelmissä ja laitteissa käytetty SSD-kerroin on Kyllästetty pintakuiva (Saturated Surface Dry) -poikkeama, joka on materiaalin veden adsorptioarvo. SSD-arvon voi selvittää käyttämällä vakiintuneita menetelmiä tai selvittämällä sen materiaalin toimittajalta.

Pintakosteussisältö viittaa **vain** runkoaineen pinnalla olevaan kosteuteen eli "vapaaseen veteen". Tietyissä käyttökohteissa, kuten betonin valmistuksessa, prosessissa käytetään vain tätä pintavettä, minkä vuoksi tämä on betoniseoksia varten useimmin viitattu arvo.

Uunikuiva kosteus-%	-	Veden adsorptioarvon %	=	Pintakosteus-%
(kokonaiskosteus)		(SSD-poikkeama anturissa)		(vapaa kosteus)

4 Kalibrointitietojen tallentaminen

Kalibrointitiedot voi tallentaa kahdella eri tavalla: joko ohjausjärjestelmään tai anturiin. Seuraavassa on esitelty molemmat tavat.

Kalibrointiin anturin sisäisesti liittyy kerroinarvojen päivittäminen käyttämällä digitaalista RS485-liittymää. Tämän jälkeen anturi antaa suoraan kosteuteen verrannollisen arvon. Hydronixilla on RS485-liittymän yhteyttä varten useita apuohjelmia tietokoneelle. Näistä tärkein on Hydro-Com, jossa on oma sivu materiaalikalibrointia varten.

Anturin ulkopuolista kalibrointia varten ohjausjärjestelmä tarvitsee oman kalibrointifunktionsa, ja kosteusmuunnoksen voi sitten laskea käyttämällä anturin lineaarista Skaalaamaton-lähtöä. Ohjeet lähdön määrittämiseen ovat kohdassa Kuva 2.

4.1 Kalibrointi anturin sisäisesti

Kuva 16: Kalibrointi anturin sisäisesti

Kun anturi kalibroidaan käyttämällä uusinta Hydro-Com- tai Hydro-View-versiota, Skaalaamaton-arvot tallennetaan kutakin mittaustilaa ja kutakin kalibrointipistettä kohden. Tämä merkitsee, että kun kelvollinen kalibrointi on suoritettu, kullekin tilalle on aina saatavilla oikea kosteusarvo. Siksi anturi tallentaa kertoimien A, B, C ja D joukon kutakin tilaa kohden.

Anturin sisäisen kalibroinnin edut ovat seuraavat:

- Kehittynyt ilmainen vianmääritysohjelman sisältävä ohjelmisto, joka parantaa kalibroinnin tarkkuutta.
- Ohjausjärjestelmää ei tarvitse muokata anturin kalibrointia varten.
- Kalibrointeja voi siirtää antureiden välillä.

4.2 Kalibrointi ohjausjärjestelmässä

Kuva 17: Kalibrointi ohjausjärjestelmässä

Ohjausjärjestelmässä tapahtuvan kalibroinnin edut ovat seuraavat:

- Suora kalibrointi ilman tarvetta käyttää lisätietokonetta tai RS485-sovitinta.
- Ei tarvitse opetella käyttämään uutta ohjelmistoa.
- Jos anturi on tarpeen vaihtaa, korvaavan Hydronix-anturin voi yhdistää, ja kelvollisia tuloksia saadaan heti yhdistämättä anturia tietokoneeseen materiaalikalibroinnin päivitystä varten.
- Kalibrointeja voi vaihtaa antureiden välillä helposti.

5 Kalibrointimenettely virtaavalle materiaalille (lineaarinen)

Kalibrointiviivan selvittämistä varten tarvitaan vähintään kaksi pistettä. Kukin piste johdetaan antamalla materiaalin virrata anturin yli ja selvittämällä anturin Skaalaamaton-lukema. Samalla materiaalista on otettava näyte ja kuivattava se todellisen kosteussisällön selvittämiseksi. Tämä antaa Kosteus-arvon ja vastaavan Skaalaamaton-arvon, jotka voi esittää kuvaajassa. Kun pisteitä on vähintään kaksi, kalibrointiviivan voi piirtää.

Anturin kalibroinnissa materiaalin mukaan suositellaan käytettäväksi seuraavaa menettelyä. Tässä menettelyssä käytetään Hydro-Com-apuohjelmaa, ja kalibrointitiedot tallennetaan anturiin. Täydelliset tiedot kalibrointiprosessista ovat Hydro-Comin käyttöoppaassa HD0682.

Prosessi on sama riippumatta siitä, tallennetaanko kalibrointitiedot anturiin vai ohjausjärjestelmään.

Testausta ja näytteenottoa varten on kansainvälisiä standardeja, joilla varmistetaan, että johdettu kosteussisältö on tarkka ja edustava. Näissä standardeissa määritellään painotusjärjestelmien ja näytteenottotekniikoiden tarkkuus, jotta näytteistä saadaan virtaavaa materiaalia hyvin edustavia. Lisätietoja näytteenotosta saat katsomalla käytössäsi olevan standardin tiedot tai ottamalla yhteyttä Hydronixiin osoitteessa support@hydronix.com.

5.1 Vinkit ja turvatoimet

- Suojaudu kuivauksen aikana tulevilta materiaalipurskeilta pitämällä suojalaseja ja suojavaatteita.
- Älä yritä kalibroida anturia kasaamalla materiaalia sen pinnalle. Tällä tavoin saadut lukemat eivät ole samanlaiset kuin todellisessa käyttökohteessa.
- Kun tallennat anturin Skaalaamaton-lähdön tuloksia, ota aina näyte paikasta, jossa anturi sijaitsee.
- Älä oleta, että saman säiliön kahden eri portin välillä virtaava materiaali olisi kosteussisällöltään samanlaista, äläkä yritä ottaa näytteitä molempien porttien virtauksesta saadaksesi keskiarvon käytä aina kahta anturia.
- Mikäli mahdollista, laske anturin lukemista keskiarvo joko anturissa käyttämällä digitaalista lähtöä tai ohjausjärjestelmässä.
- Varmista, että anturi saa mitattavakseen edustavan otoksen materiaalista.
- Varmista, että kosteustestausta varten otetaan edustava näyte materiaalista.

5.2 Laitteisto

- *Vaaka* 2 kg:n painoon asti 0,1 g:n tarkkuudella.
- *Lämmönlähde* näytteiden kuivaamista varten; esimerkiksi uuni, mikroaaltouuni tai kosteusvaaka.
- Säiliö jossa on suljettava kansi näytteiden säilyttämistä varten.
- Polyeteenipusseja näytteiden säilyttämistä varten ennen kuivausta.
- Kauha näytteiden keräämistä varten.
- *Turvavälineet* mukaan lukien lasit, lämpöä eristävät hansikkaat sekä suojavaatetus.

5.3 Kerättyjen materiaalinäytteiden käsittely

Tarkan kalibroinnin saavuttamiseksi näytteet on kerättävä materiaalista sen kulkiessa anturin yli ja anturista on tallennettava samalla Keskim. skaalaamaton -arvo materiaalin keräysjakson ajalta. Jotta kerätty materiaali saadaan analysoitua ja kosteussisältö määritettyä tarkasti, on ehdottoman tärkeää, että materiaali kerätään niin läheltä anturia kuin mahdollista ja suljetaan ilmatiiviiseen säiliöön/pussiin heti keräämisen jälkeen. Jos materiaalia ei suljeta ilmatiiviiseen säiliöön/pussiin, kosteutta katoaa ennen materiaalin analysointia. Säiliön/pussin saa avata vasta siinä vaiheessa, kun laboratoriotestit suoritetaan.

Jos kerättävä materiaali on kuumaa (ts. kuivurin poistoaukolta tai kuumassa ympäristössä kerättävää), materiaali **TÄYTYY** sulkea säiliöön/pussiin ja sen annettava jäähtyä huoneenlämpötilaan ennen analysointia. Kun materiaali on jäähtynyt, säiliötä/pussia täytyy ravistaa, jotta säiliön pinnassa oleva kosteus sekoittuu takaisin materiaaliin. Jos materiaali poistetaan ennen kuin se on jäähtynyt, menetetään kosteutta haihtumisen kautta, mikä voi aiheuttaa virheitä kalibrointiin.

HUOMAUTUKSIA: Kattavat ohjeet Hydro-Comin käyttöä varten ovat sen käyttöoppaassa (HD0682). Tallenna kaikki kalibrointitiedot, mukaan lukien virheellisiksi epäillyt tulokset.

Samat periaatteet pätevät riippumatta siitä, käytetäänkö kalibroitaessa Hydro-Comia.

5.4 Menettely

- 1. Kalibroinnin suorittamista varten on tärkeää, että Skaalaamaton-arvo tallennetaan materiaalin ohittaessa anturin. Samalla materiaalista on kerättävä näyte. Näytteet on otettava mahdollisimman läheltä anturia, jotta kerätty näyte varmasti edustaa todenmukaisesti materiaalia, jota anturi mittaa.
- 2. Kalibroinnin suorittamista varten voi hankkia Keskim. skaalaamaton -arvon joko käynnistämällä Keskim./pito-tulon syöttämällä 24 V:n jännitteen digitaaliseen tuloon tai

valitsemalla keskiarvon laskennan käynnistyksen manuaalisesti käyttämällä Hydro-Comia. Ihanteellinen asennus on sellainen, jossa digitaalinen tulo on kytketty johdolla ohjausjärjestelmään. Kun säiliö avautuu, keskiarvon laskenta alkaa, ja kun se sulkeutuu, laskenta pysähtyy. Arvoa säilytetään niin kauan, kunnes keskiarvon laskenta aloitetaan uudelleen. Materiaalin pääannoksen on käynnistettävä keskiarvon laskenta. Materiaalisysäykset eivät saisi aktivoida anturin digitaalista tuloa.

- 3. Kun materiaali on alkanut virrata vakaasti, keskiarvon laskennan pitäisi alkaa. Kerää vähintään kymmenen näytettä virrasta, jotta säiliöön saadaan vähintään 5 kg:n¹ bulkkinäyte. Materiaali on kerättävä kohdasta läheltä anturia, jotta anturin lukema vastaa tiettyä kerättyä materiaalierää.
- 4. Pysäytä materiaalin virtaus. Tallenna anturista Keskim. skaalaamaton -arvo.
- 5. Sekoita kerätty näyte perusteellisesti, jotta seoksesta tulee homogeeninen. Tämä näyte tulisi sulkea ilmatiiviiseen pussiin ja pitää poissa auringonvalosta, kunnes se on valmis analysoitavaksi. On erittäin tärkeää, että näytteen kosteus ei pääse karkaamaan.
- Ota kolme 1 kg:n näytettä kerätystä materiaalista ja suorita kullekin niistä laboratoriotestaus. Varmista, että kaikki kosteus poistetaan. Jotkin materiaalit, kuten vilja, on jauhettava ennen kuivaamista. Katso lisätietoja asiaan liittyvistä alakohtaisista standardeista.
- 7. Kaikki kolme näytettä on kuivattava täysin ja tuloksia vertailtava. Laske kosteusprosentti käyttämällä kosteuslaskinta (katso osa 5.5). Jos tulokset poikkeavat toisistaan enemmän kuin 0,3 %:n kosteuden verran, näytteet on hylättävä ja kalibrointiprosessi toistettava. Tällöin kyseessä voi olla virhe näytteenotossa tai laboratoriotesteissä.
- 8. Käytä kolmen näytteen kosteuden keskiarvoa Keskim. skaalaamaton -arvon korrelaation laskentaan.
- 9. Tämä prosessi on toistettava lisäkalibrointipisteille. Ihannetilanteessa kerätään kalibrointipisteet, jotka edustavat materiaalin käsittelyn koko kosteusaluetta.

Ohjeet kalibrointiin Hydro-Comin avulla ovat sen käyttöoppaassa (asiakirjanumero HD0682).

Huomautus 1) Runkoaineiden testausstandardeissa suositellaan, että edustavaa näytteenottoa varten tarvitaan vähintään 20 kg bulkkimateriaalia (0–4 mm materiaalia).

Huomautus 2) Runkoaineiden testausstandardeissa suositellaan, että edustavaa näytteenottoa varten kosteus ei saisi olla suurempi kuin 0,1 %.

5.5 Kosteussisällön laskeminen

(Huomaa, että tässä esimerkissä laskettu kosteus perustuu kuivapainoon.)

6 Hyvä ja huono kalibrointi

Hyvä kalibrointi tehdään analysoimalla näytteitä ja ottamalla lukemia materiaalin käsittelyn koko kosteusalueesta. Pisteitä tulisi ottaa niin monta kuin on käytännöllistä, sillä suurempi määrä pisteitä tuottaa paremman tarkkuuden. Seuraava kuva esittää hyvää kalibrointia, jossa lineaarisuus on suuri.

Kuva 18: Esimerkki hyvästä materiaalikalibroinnista

6.1 Kalibrointi on todennäköisesti epätarkka, jos:

- Kosteussisällön mittausta varten käytetään liian pientä materiaalinäytettä.
- Käytetään erittäin pientä määrää kalibrointipisteitä (erityisesti jos pisteitä on vain yksi tai kaksi).
- Testattu alinäyte ei edusta hyvin bulkkinäytettä.
- Näytteet otetaan lähes samasta kosteussisällöstä (Kuva 19, vasen). Tarvitaan hyvä arvoalue.
- Lukemissa on suuri hajonta, kuten kalibrointikuvasta Kuva 19 (oikea) näkyy. Tämä tarkoittaa yleensä epäluotettavaa tai epäjohdonmukaista näytteenottotapaa uunikuivausta varten tai huonoa anturien sijoittelua, jossa anturin yli kulkee riittämätön materiaalivirtaus.
- Jos keskiarvotoimintoa ei käytetä edustavan kosteuslukeman varmistamiseksi koko erästä.

Kuva 19: Esimerkkejä huonoista materiaalikalibrointipisteistä

7 Neliöllinen kalibrointi

Hydronixin mikroaaltokosteusanturit pystyvät hyödyntämään neliöllistä kalibrointifunktiota sellaisissa harvinaisissa tapauksissa, joissa materiaali on epälineaarinen. Neliöllisissä kalibroinneissa, joissa kalibrointipisteet eivät muodosta suoraa viivaa, käytetään A-kerrointa ja muodostetaan parhaiten sopiva käyrä (Kuva 20). Tässä käytetään seuraavaa yhtälöä:

Kosteus-% = A x (Skaalaamaton-arvo)² + B (Skaalaamaton-arvo) + C – SSD

Samaa menettelyä käytetään lineaarisissa kalibroinneissa (katso sivu 32), ja sitä tulisi noudattaa näytteiden keräämisessä ja materiaalin kosteusprosentin selvittämisessä.

Täydelliset tiedot kalibrointiprosessista ovat Hydro-Comin käyttöoppaassa HD0682.

7.1 Hyvät ja huonot neliölliset kalibroinnit

Hyvä kalibrointi tehdään siten, että kalibrointinäytteitä otetaan materiaalin koko toimintaalueelta. Hyvän tarkkuuden saavuttamiseksi tulisi ottaa mahdollisimman monta pistettä.

Kuva 20 on esimerkki hyvästä kalibroinnista. Kaikki pisteet ovat lähellä käyrää, ja pisteiden jakauma on hyvä: ne kattavat koko materiaalin kosteusalueen.

Kuva 20: Esimerkki hyvästä neliöllisestä kalibroinnista

Kuva 21 on esimerkki huonosta kalibroinnista. Selvästi käy ilmi, että kalibrointipisteet eivät ole lähellä sovitettua käyrää. Tämä voi olla merkki näytteenotto- ja laboratoriovirheistä. Tämä kalibrointi pitäisi suorittaa uudelleen.

Kuva 21: Esimerkki huonosta neliöllisestä kalibroinnista

8 Anturin kalibrointi sekoittimessa

Kun anturi on asennettu sekoittimeen, jossa on useita materiaaleja, ja sen lähdön on tarkoitus antaa kosteusprosentti, tavallista kalibrointia ei aina voi suorittaa. Näin on erityisesti betonin valmistuksessa. Näytteiden ottaminen valmiista märästä betonista ja uunikuivatuksen suorittaminen kosteusprosentin selvittämiseksi ei ole luotettavaa kemiallisten reaktioiden ja turvallisuusnäkökohtien vuoksi. Näissä tilanteissa voi käyttää kalibrointiin seuraavaa menetelmää.

1. Sekoittimessa tapahtuvaa kalibrointia varten on laskettava kaikkien kuivamateriaalien kosteusprosentti käyttämällä soveltuvaa kalibroitua kosteusanturia tai laboratoriolaitteistoa.

Tässä esimerkissä kuivasekoitusmateriaalin kosteudet ja painot ovat seuraavat:

Hiekka = 950 kg 8 %:n kosteudella Sora = 1040 kg 2,5 %:n kosteudella Sementti = 300 kg 0 %:n kosteudella (tulisi aina olla 0 %)

2. Materiaalissa olevan veden määrän selvittämiseksi on laskettava kuivapaino käyttämällä seuraavaa yhtälöä:

Kuivapaino = $\frac{M\ddot{a}rk\ddot{a}paino}{(1+Kosteus-\%)}$ (Kosteus-%: 1 = 100 %, 0,1 = 10 %) Hiekka $\frac{950}{1,08}$ = 879,63 kg Kivet $\frac{1040}{1,025}$ = 1014,63 kg Sementti $\frac{300}{1}$ = 300 kg Kokonaiskuivapaino = 879,63 + 1014,63 + 300 = **2194,26 kg**

3. Laske veden määrä materiaalissa:

Veden määrä = Märkäpaino – Kuiva paino Hiekka = 950 – 879,63 = 70,37 kg Kivet = 1040 – 1014,63 = 25,37 kg Sementti = 300 – 300 = 0 kg

Vesi yhteensä = 70,37 + 25,37 + 0 = **95,74 kg**

4. Kuivapainon ja veden määrän avulla lasketaan sitten materiaalin kosteusprosentti:

Kosteus-% = $\frac{Kokonaisvesi}{Materiaalin kuivapaino} x 100$

Kosteus-% = $\frac{95,74}{2194,26}x$ 100 = 4,36 %

- Kalibrointipisteen luomista varten kuivamateriaali on lastattava sekoittimeen ja sitä on sekoitettava perusteellisesti, kunnes signaali on vakaa eli seos on homogeeninen. Kun signaali on vakaa, tallenna anturien Skaalaamaton-arvo. Tässä esimerkissä arvo oli 35 Skaalaamaton.
- Lisää toisen kalibrointipisteen luomista varten sekoittimeen tietty määrä vettä. Tässä esimerkissä lisätään 35 litraa. Sekoita materiaalia perusteellisesti, kunnes anturin signaali on jälleen vakaa. Tallenna anturin Skaalaamaton-arvo; tässä esimerkissä 46 Skaalaamaton.
- 7. Laske märkäseoksen kosteusprosentti käyttämällä seuraavaa yhtälöä:

Vesi yhteensä = Kuivamateriaalin vesi + Lisätty vesi

Vesi yhteensä = 95,74 + 35 = 130,74 litraa

Kosteus-% = $\frac{Kokonaisvesi}{Materiaalin kuivapaino} x 100$ Kosteus-% = $\frac{130,74}{2194.26} x 100 = 5,96 \%$

8. Kalibroinnin luomiseen käytetään Skaalaamaton-arvoja ja kosteusprosenttia kuivaja märkäseoksista.

Seoksen kalibrointitiedot ovat seuraavat:

Kosteus-%	Skaalaamaton
4,36	35
5,96	46

9. Kalibrointitiedot voi siirtää Hydro-Comiin tai Exceliin kalibrointikertoimien laskemista varten. Tämän voi tehdämyös manuaalisesti käyttämällä seuraavia yhtälöitä:

B (gradientti) = $\frac{Kosteus (märkä) - Kosteus (kuiva)}{Skaalaamaton (märkä) - Skaalaamaton (kuiva)}$ B = $\frac{5,96-4,36}{46-35}$ B = $\frac{1,6}{11}$ B = 0,145

Kosteus-% = B x Skaalaamaton + C

 \therefore C (poikkeama) = Kosteus - % - (B x Skaalaamaton)

Käyttämällä märkäseoksen arvoja:

C = 5,96 - (0,145 x 46)

C = 5,96 - 6,67

C = -0,71

 Jos B- ja C-arvot ladataan anturiin, lähtöön voidaan määrittää Kosteus-%. Käyttämällä B- ja C-arvoja tässä esimerkissä, jos Skaalaamaton-arvo on 58:

Kosteus-% = 0,145 *x* 58 – 0,71

Kosteus-% = 7,7 %

Niin kauan kuin resepti ja materiaalien suhteet pysyvät samoina, kalibrointi pysyy oikeana.

9 Brix-kalibrointi

Valitut anturit pystyvät johtamaan nesteen Brix-sisällön Skaalaamaton-arvosta (lisätietoja on teknisissä tiedoissa kunkin anturin asennusoppaassa). Tämä on nesteeseen liuenneiden kiinteiden aineiden määrän mitta, ja sitä käytetään pääasiassa ruokateollisuudessa.

Brix-laskelma on erilainen kuin kosteudelle käytettävä lineaarinen laskelma. Kalibrointiviivan luomiseen käytetään seuraavaa yhtälöä:

$$Brix = A - B.e^{(\frac{C.us}{100000})} + \frac{D.us^2}{1000}$$

jossa "us" on anturista saatu Skaalaamaton-arvo. Tämä yhtälö tuottaa eksponentiaalikäyrän.

Kun anturia käytetään Brixin mittaamiseen, se on edelleen kalibroitava valvottavan prosessin mukaan. Prosessi on kuvattu seuraavassa:

- 1. Anturin kalibrointia varten on selvitettävä Skaalaamaton-arvojen joukon korrelaatiot niitä vastaavien Brix-arvojen kanssa.
- Kalibroinnin suorittamista varten tallennetaan Suodat. skaalaamaton -arvo, ja samaan aikaan materiaalista kerätään näyte. Tämä näyte tulisi ottaa mahdollisimman läheltä anturia. Näin varmistetaan, että kerätty materiaali edustaa mahdollisimman todenmukaisesti materiaalia, jota anturi mittaa.

- 3. Kun kalibrointinäytettä tarvitaan, varmista, että materiaali virtaa prosessissa. Tallenna Suodat. skaalaamaton -arvo anturista ja kerää samaan aikaan materiaalista näyte asianmukaisella näytteenottotavalla.
- 4. Näytteen tulisi olla riittävän suuri, jotta sen kanssa voi suorittaa useita laboratoriotestejä. Laboratoriosta saatuja tuloksia tulisi vertailla, koska poikkeamat tuloksissa osoittavat, että näytteenotossa tai laboratorioprosessissa on ollut virheitä.
- 5. Laboratoriotulosten keskiarvo ja Suodat. skaalaamaton -arvo muodostavat yhden kalibrointipisteen.
- 6. Vaiheet 3–5 on toistettava lisäkalibrointipisteille. Ihannetilanteessa kerätään kalibrointipisteet, jotka kattavat materiaalin koko odotetun Brix-alueen.

Hydro-Com-ohjelmiston avulla lasketaan kalibrointikertoimet ja päivitetään kalibrointi anturiin.

9.1 Hyvä ja huono Brix-kalibrointi

Hyvä Brix-kalibrointi saavutetaan analysoimalla materiaalia koko toiminta-alueella. Hyvä pisteiden jakauma on tarpeen tarkkuuden varmistamiseksi.

Kuva 22 esittää hyvän kalibroinnin, jossa kaikki pisteet ovat lähellä parhaan sopivuuden käyrää.

Kuva 22: Esimerkki hyvästä Brix-kalibroinnista

Kuva 23 on esimerkki huonosta Brix-kalibroinnista. Tämä ilmenee siitä, että kaikki pisteet eivät ole lähellä parhaan sopivuuden käyrää.

Kuva 23: Esimerkki huonosta Brix-kalibroinnista

Täydelliset tiedot Hydro-Com-ohjelmiston käytöstä ovat käyttöoppaassa HD0682.

Anturi on tarkka mittalaite, ja monissa tapauksissa tarkempi kuin muut kalibrointitarkoituksiin käytettävät laitteet tai näytteenottotekniikat. Varmista parhaan suorituskyvyn saavuttamiseksi, että asennuksessa noudatetaan jäljempänä kuvattuja perusohjeita ja että anturi konfiguroidaan käyttäen asianmukaisia suodatusparametreja.

Voi myös olla eduksi säätää anturin suodatuksen ja signaalintasauksen parametrit luvun 2 osassa 5 kuvatulla tavalla.

Vaihtoehtoisen mittaustilan valitseminen (luvun 2 osa 8) voi antaa paremman signaalivasteen, mutta ennen sitä kunkin tilan toimintaa on valvottava Hydro-Com-ohjelmistolla.

1 Yleinen kaikille käyttökohteille

- **Virran kytkeminen**: On suositeltavaa antaa anturin vakautua 15 minuutin ajan virran kytkemisen jälkeen ennen käyttöä.
- Sijoittaminen: Anturin on oltava kosketuksissa edustavaan otokseen materiaalista.
- Virtaus: Anturin on oltava kosketuksissa vakaaseen materiaalivirtaukseen.
- Materiaali: Lähteen materiaalityypin muuttuminen voi vaikuttaa kosteuslukemaan.
- Materiaalin hiukkaskoko: Mitattavan materiaalin hiukkaskoon muuttuminen voi vaikuttaa materiaalin reologiaan samalla kosteussisällöllä. Hienojakoisen materiaalin lisäys johtaa usein materiaalin jähmettymiseen, vaikka kosteussisältö olisi sama. Tätä jähmettymistä ei tule automaattisesti pitää merkkinä kosteuden vähenemisestä. Anturi jatkaa kosteuden mittaamista.
- Materiaalin kasautuminen: Vältä materiaalin kasautumista keraamiseen etulevyyn.

2 Rutiiniylläpito

Varmista, että keraamiseen mittauslevyyn ei pääse tulemaan materiaalikasautumia.

Tarkista keraaminen etulevy pinnan halkeamien ja lohkeamien varalta.

VARO ALTISTAMASTA KERAAMISTA ETULEVYÄ ISKUILLE YLLÄPIDON AIKANA Seuraavissa taulukoissa on lueteltu tavallisimmat anturia käytettäessä ilmenevät virheet. Jos et pysty selvittämään ongelmaa näiden tietojen avulla, ota yhteyttä Hydronixin tekniseen tukeen.

1 Anturin vianmääritys

1.1 Oire: Anturi ei tuota mitään tuloksia

Mahdollinen syy	Tarkista	Odotettu tulos	Vikatilanteessa tarvittava toimi
Lähtö toimii, mutta ei oikein	Suorita yksinkertainen testi pitäen kättä anturilla	Milliampeerilukema on normaalilla alueella (0–20 mA, 4–20 mA)	Katkaise anturista virta ja kytke se takaisin
Anturiin ei tule virtaa	Tasavirta haaroitusrasiassa	+15 V DC – +30 V DC	Etsi vikaa virtalähteestä ja johdoista
Anturi on tilapäisesti lukittunut	Katkaise anturista virta ja kytke se takaisin	Anturi toimii oikein	Tarkista virta
Anturi ei tuota mitään tuloksia ohjausjärjestelmään	Mittaa anturin lähtövirta ohjausjärjestelmässä	Milliampeerilukema on normaalilla alueella (0–20 mA, 4–20 mA). Vaihtelee kosteus- sisällön mukaan	Tarkista johdot takaisin haaroitusrasiaan
Anturi ei tuota mitään tuloksia haaroitusrasiaan	Mittaa anturin lähtövirta haaroitusrasian liitännöissä	Milliampeerilukema on normaalilla alueella (0–20 mA, 4–20 mA). Vaihtelee kosteus- sisällön mukaan	Tarkista anturin liitäntänastat
Anturin MIL-Spec- liittimet ovat vioittuneet	Irrota anturin kaapeli ja tarkista, ovatko liittimet vioittuneet	Nastat ovat taipuneet, ja ne voi taivuttaa normaaliasentoon sähkökytkennän muodostamiseksi	Tarkista anturin konfigurointi yhdistämällä se tietokoneeseen
Sisäinen virhe tai virheellinen konfigurointi	Yhdistä anturi tietokoneeseen käyttämällä Hydro- Com-ohjelmistoa ja soveltuvaa RS485-muunninta	Digitaalinen RS485-yhteys toimii. Korjaa konfigurointi	Digitaalinen RS485-yhteys ei toimi. Anturi on lähetettävä Hydronixille korjattavaksi

Mahdollinen syy	Tarkista	Odotettu tulos	Vikatilanteessa tarvittava toimi
Johto-ongelma	Johdot haaroitusrasiassa ja PLC:ssä	Anturista PLC:hen johtavat parikaapelit on kytketty oikein	Tee kytkennät oikein käyttämällä teknisissä tiedoissa määritettyä kaapelia
Anturin analoginen lähtö on viallinen	Kytke analoginen lähtö irti PLC:stä ja mittaa ampeerimittarilla	Milliampeerilukema on normaalilla alueella (0–20 mA, 4–20 mA)	Yhdistä anturi tieto- koneeseen ja suorita Hydro-Com. Tarkista analoginen lähtö vianmäärityssivulla. Pakota mA-lähtö tunnettuun arvoon ja tarkista se ampeerimittarilla
PLC:n analogisen lähdön kortti on viallinen	Kytke analoginen lähtö irti PLC:stä ja mittaa analoginen lähtö anturista ampeerimittarilla	Milliampeerilukema on normaalilla alueella (0–20 mA, 4–20 mA)	Vaihda analogisen lähdön kortti

1.2 Oire: Virheellinen analoginen lähtö

1.3 Oire: Tietokone ei saa yhteyttä anturiin

Mahdollinen syy	Tarkista	Odotettu tulos	Vikatilanteessa tarvittava toimi
Anturiin ei tule virtaa	Tasavirta haaroitusrasiassa	+15 V DC – +30 V DC	Etsi vikaa virtalähteestä ja johdoista
RS485 on kytketty virheellisesti muuntimeen	Muuntimen kytkennät ovat ohjeiden mukaiset ja A- ja B-signaalit oikein	RS485-muunnin on kytketty virheellisesti	Tarkista tietokoneen COM-portin asetukset
Hydro-Com- ohjelmassa on valittu virheelliset COM-sarjaportin asetukset	Valitse Hydro-Com- ohjelmassa oikeat COM-sarjaportin asetukset.	Vaihda oikeaan COM-porttiin	Selvitä todelliselle portille määritetty COM-portin numero tietokoneen laitehallinnasta
Useammalla kuin yhdellä anturilla on sama osoitenumero	Muodosta yhteys kuhunkin anturiin erikseen	Anturi löytyy osoitteesta. Määritä anturin numero uudelleen ja toista toimet kaikille verkon antureille	Kokeille toista RS485- RS232/USB-yhteyttä, jos mahdollista

1.4 Oire: Lähes vakio kosteuslukema

Mahdollinen syy	Tarkista	Odotettu tulos	Vikatilanteessa tarvittava toimi
Tyhjä säiliö tai anturi ei ole peitossa	Anturi on materiaalin peittämä	Materiaalin syvyys on vähintään 100 mm	Täytä säiliö
Materiaali on tukossa säiliössä	Materiaali ei ole tukkeutunut anturin päälle	Tasainen materiaalivirtaus anturin etulevyn yli, kun portti on avoinna	Etsi epäjohdonmukaisen virtauksen syitä. Aseta anturi uuteen paikkaan, jos ongelma jatkuu
Materiaalin kasautuminen anturin etulevylle	Keraamisella etulevyllä on merkkejä tällaisista kasautumista, kuten kuivuneita kiinteitä jäämiä	Materiaalivirtauksen liikkeen tulisi pitää keraamien etulevy puhtaana	Tarkista, että keraamisen levyn kulma on 30–60°. Jos ongelma jatkuu, aseta anturi paikalleen uudelleen
Virheellinen lähdön kalibrointi ohjausjärjestelmässä	Lähdön alue ohjausjärjestelmässä	Ohjausjärjestelmä hyväksyy anturin lähdön alueen	Muokkaa ohjausjär- jestelmää tai konfiguroi anturi uudelleen
Anturi on hälytystilassa – 0 mA, kun alue on 4–20 mA	Materiaalin kosteussisältö uunikuivauksella	On oltava anturin toiminta-alueella	Säädä anturin aluetta ja/tai kalibrointia
Häiriöt matkapuhelimista	Matkapuhelinten käyttö lähellä anturia	Ei radiotaajuuslähteitä toiminnassa lähellä anturia	Estä käyttö 5 m:n säteellä anturista
Keskim./pito-kytkin ei ole toiminut	Käytä signaalia digitaaliseen tuloon	Keskimääräisen kosteuden lukeman pitäisi muuttua	Tarkista Hydro-Comin vianmäärityksellä
Anturiin ei tule virtaa	Tasavirta haaroitusrasiassa	+15 V DC – +30 V DC	Etsi vikaa virtalähteestä ja johdoista
Anturi ei tuota mitään tuloksia ohjausjärjestelmään	Mittaa anturin lähtövirta ohjausjärjestelmässä	Vaihtelee kosteussisällön mukaan	Tarkista johdot takaisin haaroitusrasiaan
Anturi ei tuota mitään tuloksia haaroitusrasiaan	Mittaa anturin lähtövirta haaroitusrasian liitännöissä	Vaihtelee kosteussisällön mukaan	Tarkista anturin lähtökonfiguraatio
Anturi on sammunut	Katkaise virta 30 sekunniksi ja yritä uudelleen tai mittaa virtalähteestä tulevaa virtaa	Tavallinen toiminta-alue on 70 mA – 150 mA	Tarkista, että käyttölämpötila on määritetyllä alueella
Sisäinen virhe tai virheellinen konfigurointi	Poista anturi, puhdista etulevy ja tarkista lukema (a) niin, että keraaminen etulevy on puhdas ja (b) niin, että käsi on painettuna	Lukeman pitäisi muuttua kohtuullisella alueella	Tarkista toiminta Hydro- Comin vianmäärityksellä

tiiviisti keraamista etulevyä vasten	

1.5 Oire: Epäjohdonmukaiset lukemat, jotka eivät seuraa kosteussisältöä

Mahdollinen syy	Tarkista	Odotettu tulos	Vikatilanteessa tarvittava toimi
Roskat anturissa	Anturin etulevyllä on jotain ylimääräistä, kuten puhdistusliina	n etulevyllä Anturi on aina ain ylimääräistä, pidettävä vapaana puhdistusliina kaikesta ylimääräisestä	
Materiaali on tukossa säiliössä	Materiaali on tukkeutunut anturin päälle Jaile Tasainen materiaali virtaus anturin etule yli, kun portti on avoinna		Etsi materiaalin epäjohdonmukaisen virtauksen syitä. Aseta anturi uuteen paikkaan, jos ongelma jatkuu
Materiaalin kasautuminen anturin etulevylle	Keraamisella etulevyllä on merkkejä tällaisista kasautumista, kuten kuivuneita kiinteitä jäämiä	Materiaalivirtauksen liikkeen tulisi aina pitää keraamien etulevy puhtaana	Tarkista, että keraamisen levyn kulma on 30–60°. Aseta anturi uuteen paikkaan, jos ongelma jatkuu
Virheellinen kalibrointi	Varmista, että kalibro- intiarvot soveltuvat toiminta-alueelle	Kalibrointiarvot ovat jakautuneet koko alueelle, jotta ei tarvitse ekstrapoloida	Suorita lisää kalibrointimittauksia
Materiaaliin muodostuu jäätä	Materiaalin lämpötila	Materiaalissa ei ole jäätä	Anturi ei pysty mittaamaan jäässä
Keskim./pito-signaali ei ole käytössä	Ohjausjärjestelmä laskee erän keskiarvon lukemia	Keskimääräisiä kosteuslukemia on käytettävä eräpainotus- käyttökohteissa	Muokkaa ohjausjärjestelmää ja/tai konfiguroi anturi uudelleen tarpeen mukaan
Virheellinen Keskim./pito- signaalin käyttö	Keskim./pito-tulo toimii säiliöstä tulevan materiaalin päävirtauksen aikana	Keskim./pito-tulon tulisi olla aktiivinen vain päävirtauksen aikana – ei sysäysvaiheen aikana	Muokkaa ajoituksia niin, että mittaukseen tulee päävirtaus, mutta ei loppusysäyksiä.
Virheellinen anturin konfigurointi	Käytä Keskim./ pito-tuloa. Tarkkaile anturin toimintaa	Lähdön tulisi olla vakio, kun Keskim./ pito-tulo on poissa käytöstä ja muuttuva, kun se on käytössä	Anturin lähtö on konfiguroitu oikein käyttökohdetta varten
Riittämättömät maadoitukset	Metalliosien ja kaapelien maadoitukset	Potentiaalierot maahan on minimoitava	Varmista maattamalla, että metalliosat ovat samassa potentiaalissa

1.6 Anturin lähdön ominaisuudet

	Suodat. skaalaamaton -lähtö (tässä näkyvät arvot ovat likiarvoja)			
	RS485	4–20 mA	0–20 mA	0–10 V
Anturi on kosketuksissa ilmaan	0	4 mA	0 mA	0 V
Käsi anturilla	75–85	16–17,6 mA	15–17 mA	7,5–8,5 V

Luku 6

K: Hydro-Com ei löydä antureita

V: Jos RS485-verkkoon on yhdistetty enemmän kuin yksi anturi, varmista, että kullakin niistä on oma osoite. Varmista, että anturi on kytketty oikein, että se saa virtaa asianmukaisesta 15–30 V:n tasavirtalähteestä ja että RS485-johdot on kytketty tietokoneeseen asianmukaisen RS232-485- tai USB-RS485-muuntimen kautta. Varmista Hydro-Com-ohjelmassa, että valittuna on oikea COM-portti.

K: Kuinka usein anturi pitäisi kalibroida?

V: Uudelleenkalibrointi on tarpeen vain, jos materiaalin rakeisuus muuttuu merkittävästi tai käyttöön otetaan uusi materiaalilähde. Käyttökohteesta kannattaa kuitenkin ottaa näytteitä (katso Johdanto materiaalikalibrointiin sivulla 29) säännöllisesti kalibroinnin oikeellisuuden ja tarkkuuden varmistamiseksi. Laita nämä tiedot luetteloon ja vertaa niitä anturista saatuihin tuloksiin. Jos pisteet ovat kalibrointiviivalla tai lähellä sitä, kalibrointi on edelleen hyvä. Jos niissä on johdonmukainen ero, kalibrointi on tehtävä uudelleen.

K: Jos minun on vaihdettava anturi, onko uusi anturi kalibroitava?

V: Tavallisesti ei, jos anturi asetetaan täsmälleen samaan paikkaan. Kun kopioit materiaalin kalibrointitiedot uuteen anturiin, saat samat kosteuslukemat. Kalibrointi kannattaa kuitenkin tarkistaa ottamalla näyte sivun 29 kohdassa Johdanto materiaalikalibrointiin kuvatulla tavalla ja tarkistamalla kyseinen kalibrointipiste. Jos piste on kalibrointiviivalla tai lähellä sitä, kalibrointi on edelleen hyvä.

K: Mitä pitäisi tehdä, jos materiaalin kosteudessa on vain vähän vaihtelua kalibrointipäivänä?

V: Vain hiekalle (vain HP04)

Jos otat eri näytteitä, ja niiden kosteudessa on vain vähän vaihtelua (1–2 %), voit tyytyä yhteen hyvään kalibrointipisteeseen, jonka saat ottamalla keskiarvon Skaalaamaton-lukemista ja uunikuivattujen näytteiden kosteuksista. Hydro-Com antaa sinun muodostaa kelvollisen kalibroinnin siksi aikaa, kunnes pisteitä voidaan lisätä. Kun lukema muuttuu vähintään kahdella prosentilla, ota uusi näyte ja paranna kalibrointia lisäämällä pisteitä.

- K: Jos muutan käyttämäni materiaalin tyyppiä, onko kalibrointi tehtävä uudelleen?
- V: Kyllä, kalibrointi on tehtävä uudelleen jokaiselle materiaalityypille.
- K: Mitä lähtömuuttujaa minun pitäisi käyttää?
- V: Tämä määräytyy sen mukaan, tallennetaanko kalibrointi anturiin vai eräohjaimeen ja käytetäänkö digitaalista lähtöä erän keskiarvon laskentaan. Lisätietoja on kohdassa Analogisen lähdön asetukset sivulla 15.
- *K:* Kalibroinnissa tekemissäni pisteissä vaikuttaa olevan hajontaa. Onko tämä ongelma, ja voinko jotenkin parantaa kalibroinnin tulosta?
- V: Jos pisteissä, joiden mukaan yrität sovittaa viivaa, on hajontaa, näytteenottotekniikassa on jokin vialla. Varmista, että anturi on asennettu kunnolla virtaukseen. Jos anturi asetettu paikalleen hyvin ja näytteenotto suoritetaan sivulla 32 kuvatulla tavalla, tätä ei pitäisi tapahtua. Käytä kalibrointiin Keskim. skaalaamaton -arvoa. Keskiarvon laskentajakson voi määrittää joko Keskim./pito-tulolla tai käyttämällä Keskiarvon etälaskenta -toimintoa. Lisätietoja on Hydro-Com-ohjelmiston käyttöoppaassa (HD0682).

- *K:* Anturin lukemat vaihtelevat epäjohdonmukaisesti eivätkä ole yhdenmukaisia materiaalin kosteuden vaihtelun kanssa. Mikä tähän voi olla syynä?
- V: Anturin etulevyn on saattanut kasautua materiaalia virtauksen aikana. Jos kasautumia tulee, anturi pystyy havaitsemaan vain edessään olevan materiaalin, minkä vuoksi lukema pysyy jokseenkin samana kosteuden muuttuessakin. Lukema voi pysyä samana, kunnes kasautuma irtoaa, jolloin uutta materiaalia pääsee taas virtaamaan anturin etulevyn yli. Tällainen aiheuttaa äkillisiä muutoksia lukemissa. Voit tarkistaa asian kopauttamalla säiliön/siilon seiniä mahdollisen kasautuneen materiaalin irrottamiseksi ja katsomalla, muuttuvatko lukemat. Tarkista myös anturin asennuskulma. Keraamisen etulevyn tulisi olla asennettuna sellaiseen kulmaan, että materiaali pääsee virtaamaan jatkuvasti sen yli. Säiliöön asennettavissa antureissa on takalevyn kilvessä kaksi viivaa, jotka osoittavat, mihin kulmaan anturi tulisi asentaa suhteessa materiaalivirtaukseen. Keraamisen levyn oikea kulma on sellainen, jossa jompikumpi viiva on materiaalivirtauksen suuntainen.

K: Vaikuttaako anturin kulma lukemiin?

- V: On mahdollista, että anturin kulman muuttaminen vaikuttaa lukemiin. Tämä johtuu mittauspinnan ohi virtaavan materiaalin pakkautumisen tai tiheyden muutoksesta. Käytännössä pienillä kulman muutoksilla on mitättömän pieni vaikutus lukemiin, mutta suuri, yli 10 asteen muutos asennuskulmaan vaikuttaa lukemiin ja voi jopa aiheuttaa sen, ettei kalibrointi ole enää oikea. Tämän vuoksi on tärkeää, että kun anturi otetaan pois tai vaihdetaan, uusi asennus tehdään samaan kulmaan.
- K: Miksi anturi antaa negatiivisen kosteustiedon, kun säiliö on tyhjä?
- V: Skaalaamaton-lähtö ilmalle on pienempi kuin Skaalaamaton-lukema materiaalin 0 %:n kosteudelle. Siksi kosteuslukema on negatiivinen.
- K: Kuinka pitkää kaapelia voin käyttää?
- V: Täydet tekniset tiedot ovat kunkin anturin asennusoppaassa.

Liite A

1 Asiakirjaviittaukset

Tässä osassa on lueteltu kaikki muut asiakirjat, joihin tässä käyttöoppaassa viitataan. Tästä kannattaa opasta luettaessa olla kopio saatavilla.

Asiakirjanumero	Otsikko
HD0682	Hydro-Com-käyttöopas
HD0675	Hydro-Probe- ja Hydro-Probe XT -asennusopas
HD0676	Hydro-Mix-asennusopas
HD0677	Hydro-Probe Orbiter -asennusopas
HD0678	Hydronixin kosteusanturin sähköasennusopas
EN0077	Kosteuden ohjausmenetelmät eräkäsittelyssä
EN0078	Hydro-Mix- ja Hydro-Probe-anturien integrointi viljakanavaan
EN0079	HP04-anturin tehtaan oletusparametrit
EN0080	XT02-anturin tehtaan oletusparametrit
EN0081	HM08-anturin tehtaan oletusparametrit
EN0082	ORB3-anturin tehtaan oletusparametrit
HD0881	Hydronix Microwave Moisture Sensor Modbus RTU Protocol Register Mapping (Hydronix-mikroaaltokosteusanturi Modbus RTU Protocol Register Mapping)

Hakemisto

Alaraja	Katso hälytykset
Analoginen lähtö	13, 15
Autojäljitys	18
Brix	
Digitaaliset tulot/lähtö	17
Hydro-Com	15, 49
Hälytykset	
Alaraja	19
Hälytystapa	19
Yläraja	19
Kalibrointi	49
Anturin sisäinen	32
Brix	
Hyvä ja huono	34
Hyvät ja huonot neliölliset ka	alibroinnit36
Menettely	
Ohjausjärjestelmässä	32
Sekoittimessa	
Tietojen tallentaminen	31
Keskiarvoparametrit	19
Keskim. skaalaamaton	16
Keskim./pito	17
Kokonaiskosteus	31
Konfiguraatio	13
Kosteus	
Negatiivinen	50
Pinta	31

Kosteus/lämpötila	
Kosteussisältö	
Kyllästetty pintakuiva	Katso SSD
Lähtö	
Mittaustekniikka	
Mittaustilat	24
Näytteet	
Kansainväliset standardit	
Parametrit	
Keskiarvo	
Raaka skaalaam	
Raakakosteus	
SSD	
Suod. voimakksuodattimet .	
Suodatettu signaali	23
Suodattimet	
Suod. voimakk	
Suodatus	
Suodatusaika	
Säiliö tyhjä	
Tasausaika	21
Tiedoissa virhe	
Toissijainen protokolla	
Modbus-määritys	
Vapaa kosteus	
Veden absorptioarvo	
Yläraja	Katso hälytykset