Hydro-Control VI Guía de instalación

Para realizar nuevos pedidos, indique el número de pieza:	HD0455sp
Revisión:	1.9.0
Fecha de revisión:	Marzo de 2020

Copyright

Queda prohibida la adaptación o reproducción de toda o parte de la información que se incluye en esta documentación o en el producto que se describe, en cualquier forma material, sin la aprobación previa y por escrito de Hydronix Limited, en adelante Hydronix.

© 2020

Hydronix Limited Units 11 & 12 Henley Business Park Pirbright Road Normandy Guildford Surrey GU3 2DX Reino Unido

Reservados todos los derechos

RESPONSABILIDAD DEL CLIENTE

El cliente, en la aplicación del producto que se describe en esta documentación, acepta que éste es un sistema electrónico programable, inherentemente complejo, y que no está completamente exento de fallos. Al hacer esto, el cliente asume la responsabilidad de garantizar una correcta instalación, puesta en marcha, manejo y mantenimiento por parte del personal competente y formado adecuadamente, y de acuerdo con las instrucciones o medidas de seguridad disponibles o con conocimientos de ingeniería, así como de verificar meticulosamente la utilización del producto en su aplicación concreta.

ERRORES EN LA DOCUMENTACIÓN

El producto que se describe en esta documentación está sujeto continuamente a desarrollos y mejoras. Toda la información de naturaleza técnica y los detalles del producto y de su uso, incluida la información y los detalles contenidos en esta documentación, son ofrecidos por Hydronix de buena fe.

Hydronix acepta cualquier comentario o sugerencia relacionados con el producto y con esta documentación.

MENCIONES

Hydronix, Hydro-Probe, Hydro-Mix, Hydro-Skid, Hydro-View e Hydro-Control son marcas comerciales registradas de Hydronix Limited.

Oficinas de Hydronix

Oficina central en RU

Dirección:	Units 11 & 12 Henley Business Park Pirbright Road Normandy Guildford Surrey GU3 2DX Reino Unido
Tel.: Fax:	+44 1483 468900 +44 1483 468919
Correo electrónico:	support@hydronix.com sales@hydronix.com
Sitio web:	www.hydronix.com

Oficina de América del Norte

Engloba América del Norte y América del Sur, Estados Unidos, España y Portugal

Dirección:	692 West Conway Road Suite 24, Harbor Springs MI 47940
	Estados Unidos
Tel.:	+1 888 887 4884 (gratuito) +1 231 439 5000
Fax:	+1 888 887 4822 (gratuito) +1 231 439 5001

Oficina europea

Engloba Europa Central, Rusia y Sudáfrica

Tel.:	+49 2563 4858
Fax:	+49 2563 5016

Oficina en Francia

+33 652 04 89 04

Historial de revisiones

Nº de revisión	Versión de software	Fecha	Descripción del cambio
1.0.0		Junio de 2010	Primera versión
1.1.0		Noviembre de 2010	Juego de comandos RS232 añadido para Hydro- Control IV
1.2.0		Marzo de 2011	Se ha añadido configuración de soporte remoto
1.3.0		Agosto de 2011	Capitulo 6: Formatos de registro de mezcla actualizado
1.4.0	V2.0.0	Enero de 2012	Se han añadido la tabla de registro de mezcla RS232 HC06 v2 y secciones adicionales para las funciones de tiempo de mezcla inicial y Seguimiento automático para la mezcla prehúmeda e inicial
1.5.0	V2.0.0	Junio de 2013	Se ha añadido la ilustración 38: configuración habitual de la válvula de agua Se ha añadido la tabla Diámetro de tubería Se ha actualizado la ilustración 42
1.6.0	V2.3.0.0	Setiembre de 2013	Se han añadido los comandos *9 y *10 de RS232
1.7.0	V2.5.0.0	Julio de 2014	Se ha añadido información sobre la Cabina de control. Se ha actualizado el mensaje de serie ?14 para la descripción del Comando RS232.
1.8.0	V2.8.0.0	Octubre de 2015	Se ha añadido la configuración de registro de mezcla máxima, funciones adicionales de HS0102, la configuración de IP a estática, la resolución de agua pesada, la calibración de sensores en modos de medición adicionales y el apagado del sistema controlado con el PLC.
1.9.0	V2.15.0.0	Marzo de 2020	Referencia añadida al HC06 v2 (sin tarjetas de memoria) Función de archivado añadida Dirección actualizada

1	1:	
111	(11	се
	~	~~

Capítulo 1 Introducción	13 13 14 14
Capítulo 2 Instalación mecánica 1 Peso y dimensiones 2 Montaje e instalación 3 Temperatura de funcionamiento 4 Módulos OPTO 5 Tarjetas de memoria 6 Capa protectora de pantalla táctil	17 17 18 19 19 19 20
Capítulo 3 Instalación eléctrica 1 Asignaciones de terminales del conector	21 22 24 24 24 25 26 28 28
Capítulo 4 Puesta en marcha 1 Navegación por pantalla 2 Árbol de menús 3 Pruebas básicas 4 Recalibración de la pantalla táctil 5 Parámetros del sistema 6 Configuración del sensor 7 Parámetros de fórmula	29 29 30 33 34 41 46
Capítulo 5 Diseño del sistema 1 Válvulas de agua 2 Medición de flujo 3 Sistemas de reacondicionamiento 4 Diseño del ciclo de mezclado	55 55 57 58 61
Capítulo 6 Control RS232 1 Ajustes del puerto	69 69 70 86
 Capítulo 7 Soporte remoto 1 Soporte remoto utilizando el servidor de soporte de la Hydronix Hydro-Control VI 2 Soporte remoto utilizando un servidor personalizado 3 Configurar el Hydro-Control para utilizar una dirección IP estática 	87 87 88 89
 Capítulo 8 Copia de seguridad, restauración y actualización	91 91 92 93
Apéndice A Registro de parámetros del sistema	95
Apéndice B Diagnósticos	97
Apéndice C Glosario	101
Apéndice D Referencia cruzada de documentos	103

Tabla de ilustraciones

Figura 1: Hydro-Control VI	13
Figura 2: Base del Hydro-Control VI con la etiqueta del vástago de masa en el círculo rojo	14
Figura 3: Parte posterior del Hydro-Control que muestra el símbolo de seguridad eléctrica en el círculo rojo	15
Figura 4: Vista posterior del Hydro-Control VI	17
Figura 5: Vista del Hydro-Control VI con los soportes de montaje	18
Figura 6: Disyuntor del panel para el Hydro-Control VI	18
Figura 7: Puerto de acceso a las tarjetas de memoria que muestra las etiquetas de las tarjetas	19
Figura 8: Parte posterior del Hydro-Control que muestra dos de los conectores en la parte inferior	21
Figura 9: Base del Hydro-Control que muestra los conectores	21
Figura 10: Diagrama de cableado de entrada digital	26
Figura 11: Diagrama de cableado de salida digital	26
Figura 12: Diagrama de cableado de circuito de corriente de entrada analógica	26
Figura 13: Conexión de un dispositivo alimentado por el circuito	26
Figura 14: Conexión del circuito de corriente de un dispositivo con alimentación externa	27
Figura 15: Conexión de una señal de voltaje a la Entrada analógica	27
Figura 16: Diagrama de cableado de salida analógica	27
Figura 17: Cableado de entradas de selección de fórmula	28
Figura 18: Estructura de menús del Hydro-Control VI	29
Figura 19: Configuración y estado de E/S – Página 1	31
Figura 20: Configuración y estado de E/S – Página 2	32
Figura 21: Parte superior del Hydro-Control que muestra el botón de recalibración	33
Figura 22: Ejemplo de una pantalla de calibración que muestra el objetivo	34
Figura 23: Pantalla Parámetros del sistema	34
Figura 24: La segunda pantalla de Parámetros del sistema	38
Figura 25: Cambio de la fecha y la hora	38
Figura 26: Pantalla de supervisión de temperatura y voltaje	39
Figura 27: Página de configuración del agua pesada	40
Figura 28: La pantalla de configuración del sensor – Página 1	41
Figura 29: La pantalla de configuración del sensor – Página 2	42
Figura 30: La pantalla de configuración del sensor – Página 3	43
Figura 31: La pantalla de configuración del sensor – Página 4	44
Figura 32: Los controles de la prueba de salida analógica	44
Figura 33: La pantalla de configuración del sensor – Página 5	45
Figura 34: Pantalla Descripción general de fórmula	46
Figura 35: Editar fórmula – Página 1	47
Figura 36: Editar fórmula – Página 2	50
Figura 37: Editar fórmula – Página 3	52
Figura 38: Configuración habitual de la válvula de agua	55

Figura 39: Diagrama de bloques del sistema	58
Figura 40: Ejemplo de esquema de cableado para funcionamiento manual de planta	59
Figura 41: Interconexiones del sistema	61
Figura 42: Ciclo de mezcla completa	62
Figura 43: Ciclo de mezclado que muestra el estado de E/S	63
Figura 44: Señal de salida de admix durante un ciclo de mezclado normal	64
Figura 45: Señal de salida de admix durante un ciclo de mezclado de 2 pasos	65
Figura 46: Señal de mezcla que muestra ajustes de Seguimiento automático	66
Figura 47: Ejemplo del parámetro Seguimiento automático para la fase Mezcla seca	66
Figura 48: Pantalla Comunicaciones remotas de RS232	69
Figura 49: Página Comunicaciones Ethernet	87
Figura 50: UltraVNC View software	88
Figura 51: Configuración del repetidor	89
Figura 52: Vista lateral del Hydro-Control VI que muestra los puertos USB	91
Figura 53: Algunos de los archivos del disco de claves USB tras la extracción	93
Figura 54 Pantalla de la página 2 de los parámetros del sistema	94

Contenido de la caja

Contenido estándar:

1	х	Unidad Hydro-Control VI
4	х	Abrazaderas de fijación superiores/inferiores
2	х	Abrazaderas de fijación laterales
1	х	Conector de 10 vías para comunicaciones de alimentación/sensor
1	х	Conector de 11 vías para entradas digitales
1	х	Conector de 14 vías para salidas digitales
1	х	Conexión USB de montaje en panel
1	х	Tarjeta de memoria USB

Contenido adicional (si la Tarjeta de expansión se ha instalado de fábrica):

- 1 x Conector de 8 vías para entradas/salidas analógicas
- 1 x Conector de 9 vías para entradas de selección de fórmula

Accesorios

Accesorios disponibles:

Nº de pieza	Descripción
0116	Alimentación eléctrica de 24 V CC (30 vatios)
0175	Conexión USB de montaje en panel
0176	Tarjeta del sistema de sustitución (no aplicable al HC06 v2)
0177	Tarjeta de datos de sustitución (no aplicable al HC06 v2)
0179	Capa protectora de pantalla táctil de sustitución
0180	Tarjeta de expansión de Hydro-Control VI
0170	Receptáculo de montaje en pared para Hydro-Control VI
0190	Cabina de control de Hydro-Control VI

	Agua añadio Total agua:	fa: OL 134.7L	Veloc. flujo: 0L/s Temp.: 25.610	Fórmula: 2 Lote: 4 Modo: Preajuste
Nombre de la Fase mezcla:	En espera	bre	14/12/2010 11:39: Valor fin: 10% Humeda Vacio	49 Formula / Modo Ajuste circuito aut Mostrar sin escala Actual, valor final Cerrar sesión
Peso en seco: 0 de 0L Agua prehum.	2000kg 0 de 0s Mez. prehum. 1	0 de 10s Mezcla seca	Ajustar OL 0 de SL Agua principal	0 de tês Mezcla hûm, Os
Iniciar	Pausa		rumpir Acep alarr	otar ma Menú

Figura 1: Hydro-Control VI

1 Introducción al Hydro-Control VI

El Hydro-Control VI es un ordenador de pantalla táctil que emplea el sistema operativo Microsoft Windows XP Embedded, diseñado para funcionar con la gama de sensores Hydronix para supervisar el nivel de humedad en un proceso (normalmente en una mezcladora) y enviar señales para ajustar el flujo de agua hacia el proceso mediante válvulas de agua.

El nivel de humedad durante el ciclo del proceso se muestra en la pantalla principal y existen herramientas gráficas intuitivas y de uso sencillo para configurar las fórmulas en el sistema.

La comunicación con sistemas externos se puede implementar utilizando el puerto serie RS232 integrado, el puerto Ethernet Telnet (puerto 23) o la placa de expansión opcional. La placa de expansión también proporciona dos entradas analógicas y dos salidas analógicas.

Entradas digitales:

Inicio/reanudación, entrada de cemento, pausa/reinicio, entrada de pulsos del contador de agua, depósito de agua lleno, 8 entradas opcionales para la selección de recetas Salidas digitales:

Válvula gruesa, Válvula fina, admix, prehumedecimiento realizado, mezcla realizada, alarma, llenado del depósito de agua

2 Acerca de este manual

Este manual no es una guía del usuario. Ha sido desarrollado como una guía de referencia para ingenieros encargados de diseñar, instalar o poner en marcha un sistema Hydro-Control VI.

Este manual sirve de complemento a la Guía del operador en la que se describe cómo configurar y calibrar fórmulas en el Hydro-Control VI. Para comprender las opciones de funcionamiento y los consiguientes requisitos de diseño, se aconseja leer la Guía del operador antes de leer este manual.

El manual se divide en tres secciones que abarcan la instalación mecánica, la instalación eléctrica y la puesta en marcha de la unidad.

3 Seguridad

El Hydro-Control VI ha sido diseñado para cumplir los requisitos de IEC/EN 61010-1: 2001 y ANSI/UL 61010-1 Segunda edición.

Este equipo se ha diseñado para funcionar de manera segura bajo las condiciones siguientes.

3.1 **Precauciones**

Esta unidad es adecuada únicamente para su uso en interiores.

Si el equipo se emplea de un modo no especificado por el fabricante, puede verse afectada la protección que ofrece el mismo.

La instalación final debe ofrecer un medio para desconectar el suministro eléctrico a la unidad. Debe estar marcado como el dispositivo de desconexión y al alcance con facilidad del operador.

Desconecte todas las señales de suministro de corriente antes de abrir la unidad para realizar cualquier ajuste, mantenimiento o tarea de reparación.

Asegúrese de que sólo se conectan fusibles del tipo y régimen correctos.

Asegúrese de que el Hydro-Control se instala en un entorno que no provocará interferencias eléctricas.

3.2 Explicación de símbolos y marcas

Es importante comprender el significado de los distintos símbolos y marcas en el equipo Hydro-Control de la siguiente forma:

Figura 2: Base del Hydro-Control VI con la etiqueta del vástago de masa en el círculo rojo

Figura 3: Parte posterior del Hydro-Control que muestra el símbolo de seguridad eléctrica en el círculo rojo

Precaución – Riesgo de descarga eléctrica.

Precaución – Consultar los documentos adjuntos.

3.3 Requisitos de separación

Es importante asegurarse de que el Hydro-Control dispone de una separación adecuada para la ventilación y el acceso al mismo. Los respiraderos superior y laterales no deben restringirse y la placa de acceso superior para las tarjetas CompactFlash debe tener un acceso sencillo.

La separación mínima para la parte superior y los laterales del cerramiento es de 100 mm. Puede que sea necesario dejar más espacio en la parte superior para permitir el acceso a la placa de acceso superior con un destornillador.

3.4 Clasificación IP

Si se integran correctamente en un cerramiento adecuado, el panel delantero y la pantalla táctil están diseñados para tener una clasificación de Protección de ingreso (IP) IP66. El equivalente para América de esta clasificación es NEMA 4.

Esta clasificación IP/NEMA sólo se aplica si la unidad se ha instalado de acuerdo con los procedimientos de montaje mecánico del Capítulo 2 de esta guía de instalación.

3.5 Condiciones medioambientales

La gama de condiciones medioambientales para las que se ha diseñado el equipo es la siguiente:

- Uso exclusivamente en interiores
- Altitud máxima de 2000 m
- Temperatura de 0°C a 40°C (32°F a 104°F)
- Humedad relativa máxima del 80% para temperaturas máximas de 31°C, con reducción lineal al 50% de humedad relativa a 40°C
- Grado de contaminación 3 (equipo eléctrico en zonas industriales o de cultivo, salas sin tratar y salas de calderas)

3.6 Rayos

Es necesario tener en cuenta la protección de la instalación frente a daños provocados por rayos y perturbaciones eléctricas similares.

Habrá numerosas instalaciones en situaciones particularmente proclives a recibir daños por rayos, como por ejemplo:

- Regiones tropicales.
- Tendidos de cable largos entre el sensor y el panel de control.
- Construcciones altas, eléctricamente conductoras (por ejemplo, depósitos agregados).

A pesar de que el Hydro-Control está equipado con aislamiento óptico en la entrada del sensor, esto no evitará los posibles daños en todos los casos. Sigue siendo necesario tomar precauciones para evitar daños provocados por rayos en zonas en las que existe un riesgo conocido.

Se recomienda instalar barreras contra rayos adecuadas en todos los conductores del cable de prolongación del sensor. Idealmente, estas barreras se acoplarían en ambos extremos de este cable para proteger el sensor, el Hydro-Control y cualquier otro equipo conectado al mismo.

Se recomienda instalar el equipo utilizando cables blindados según las especificaciones definidas en el Capítulo 3, sección 7.

3.7 Limpieza

El panel delantero del Hydro-Control se debe limpiar con un paño suave. No deben emplearse líquidos ni materiales abrasivos.

Instalación mecánica

Capítulo 2

Figura 4: Vista posterior del Hydro-Control VI

1 Peso y dimensiones

Tablero:	246 mm (ancho) x 190 mm (alto); (9,69" (ancho) x 7,48" (alto))
Recorte del panel:	232 mm (ancho) x 178 mm (alto); (9,14" (ancho) x 7,00" (alto))
Grosor máx. del panel:	8 mm
Profundidad:	84 mm (3,54")
Profundidad bajo el tablero:	78 mm (3,31")
Peso:	3,5 kg (7,75 libras)

NOTA:

Las conexiones de E/S se realizan por la base, por lo que es necesario disponer de acceso para los cables y conectores.

Debe dejarse espacio disponible para las tarjetas de memoria (no aplicable al HC06 v2) para que se instalen en la placa de acceso en la parte superior de la unidad.

Las conexiones USB se realizan en la parte derecha de la unidad (vista desde la parte posterior). Se debe dejar espacio suficiente para permitir la inserción y la extracción de una tarjeta de memoria USB, en caso necesario.

Se debe permitir un mínimo de 100 mm de espacio alrededor de la unidad para la circulación del aire refrigerante.

En la parte inferior derecha de la unidad (vista desde la parte posterior) se coloca un vástago de masa.

Figura 5: Vista del Hydro-Control VI con los soportes de montaje

2 Montaje e instalación

La unidad se debe montar en un panel de control (grosor máximo: 8 mm) utilizando una abrazadera en cada lado, dos abrazaderas en la parte superior y dos abrazaderas en la parte inferior. Para encajar las abrazaderas laterales, coloque la abrazadera en las ranuras del lateral de la unidad y deslícela hacia abajo hasta que las partes superior e inferior de la abrazadera queden niveladas con la caja. Para encajar las abrazaderas superior e inferior, inserte la abrazadera en la ranura y apriete el perno.

Para instalar el Hydro-Control

- Corte una abertura en el panel del tamaño correcto. Consulte la Figura 6 para ver una plantilla.
- Extraiga las abrazaderas de montaje del cuerpo de la unidad liberando los tornillos y, a continuación, desenganchando las abrazaderas.
- Inserte el Hydro-Control a través del orificio preparado.
- Vuelva a encajar las abrazaderas de montaje en la unidad y apriete los tornillos de manera uniforme para tirar del tablero hacia el panel de control.

Panel o cerramiento
Disyuntor para
232 mm (9,14")
9 g uu

Figura 6: Disyuntor del panel para el Hydro-Control VI

3 Temperatura de funcionamiento

La unidad está diseñada para funcionar a temperaturas de aire ambiente dentro del gabinete de 0 – 40 °C (32 – 104 °F).

Si las temperaturas ambiente varían respecto a la indicación anterior, puede que sea necesario instalar un sistema de regulación de temperatura.

4 Módulos OPTO

Se puede acceder a los módulos de E/S OPTO-22 a través del panel extraíble ubicado en la parte posterior de la unidad. El panel se mantiene en su posición mediante cuatro tornillos imperdibles. Cuando los tornillos se liberan y el panel se extrae, los módulos OPTO se pueden extraer y sustituir individualmente empleando sus tornillos de retención individuales. Es necesario desconectar toda la alimentación, tanto de la unidad como del cableado del inductor, siempre que la cubierta no esté en su lugar.

5 Tarjetas de memoria

Nota: El HC06 v2 utiliza un disco duro SSD interno y no incluye tarjetas de memoria extraíbles (Figure 5). El disco duro SSD no es extraíble, por lo tanto, el usuario no puede llevar a cabo labores de mantenimiento. Póngase en contacto con support@hydronix.com en caso de error.

Existen dos ranuras para tarjetas de memoria y se puede acceder a las mismas retirando la abrazadera de montaje de la esquina superior izquierda del Hydro-Control (visto desde la parte posterior). Al extraer los dos tornillos pequeños se abre la placa de acceso sobre las conexiones de las tarjetas (tal como se muestra en la Figura 7).

Figura 7: Puerto de acceso a las tarjetas de memoria que muestra las etiquetas de las tarjetas

Tal como se muestra en la Figura 7, las tarjetas de memoria se montan de modo que la Tarjeta del sistema queda más cerca de la parte delantera de la unidad y la Tarjeta de datos queda más cerca de la parte posterior. Ambas tarjetas presentan etiquetas claras. La Tarjeta del sistema es de color azul y la Tarjeta de datos es de color beige.

Las tarjetas de memoria se deben insertar siempre de modo que el logotipo de Hydronix esté orientado hacia la parte posterior de la unidad. La Tarjeta del sistema nunca se debe transferir entre unidades.

En caso necesario, la Tarjeta del sistema se puede sustituir por el Número de pieza 0176 de Hydronix. La Tarjeta se debe sustituir por una tarjeta del mismo color que la tarjeta original instalada de fábrica.

Con el tiempo, el rendimiento de las tarjetas de memoria puede degradarse y, debido a ello, es necesario sustituir la Tarjeta de datos cada cinco años por el Número de pieza 0177 de Hydronix.

Utilice piezas originales de Hydronix para garantizar la compatibilidad y la fiabilidad continua de la unidad.

6 Capa protectora de pantalla táctil

La pantalla táctil dispone de una fina película de plástico que la protege. Esta película no está pegada, sino que se sostiene alrededor del borde mediante el bisel de la parte delantera del Hydro-Control. Si el protector se desgasta o se ensucia, puede sustituirse por el Número de pieza 0179 de Hydronix.

La capa protectora de pantalla táctil se puede retirar aplicando presión con cuidado en la parte delantera del Hydro-Control y deslizando la película hacia abajo ligeramente. De este modo se expondrán las esquinas de la película que se pueden retirar de la pantalla táctil. En caso necesario, se puede utilizar una herramienta de plástico roma como ayuda para levantar la película.

Para colocar una nueva película, extraiga la película del embalaje y asegúrese de mantenerla limpia y alejada del polvo. Retire la envoltura protectora de la superficie posterior (brillante) del protector de la pantalla táctil y, a continuación, levante con cuidado el nuevo protector sobre la pantalla de modo que la superficie delantera antideslumbrante (mate) quede orientada en sentido opuesto a la pantalla táctil.

Capítulo 3

En este capítulo se describe la configuración de los conectores en la unidad Hydro-Control y la manera en que se debe diseñar e instalar el cableado. Estas conexiones variarán en función de los requisitos de integración y configuración del diseño del sistema.

Figura 8: Parte posterior del Hydro-Control que muestra dos de los conectores en la parte inferior

En el diagrama del Hydro-Control presentado en la Figura 8 se muestra la parte posterior de la unidad con las etiquetas en las que se detallan los conectores y los Módulos OPTO.

Figura 9: Base del Hydro-Control que muestra los conectores

En la Figura 9 se muestran los conectores tal como se ven desde la base de la unidad.

1 Asignaciones de terminales del conector

1.1 Conector de salida

Terminales		Nombre	Descripción
+	-		
1	2	Válvula gruesa	Controla la válvula de incorporación de agua gruesa más grande
3	4	Válvula fina	Controla la válvula de incorporación de agua fina más pequeña
5	6	Prehumedecimiento realizado	Se establece para indicar el final de la fase de prehumedecimiento
7	8	Mezcla completa	Se establece para indicar que el Hydro-Control ha finalizado el control
9	10	Alarma	Se establece para indicar que el Hydro-Control se encuentra en un estado de alarma
11	12	Admix	Controla el inicio de la incorporación de aditivos
13	14	Llenado de tanque de agua	Controla el llenado del tanque de agua en un sistema de agua pesada

1.2 Conector de entrada

Terminales		Nombre	Descripción
+	-		
15	16	Entrada de cemento	El impulso mínimo de 200 ms indica que se ha añadido el cemento
17	18	Iniciar/Reanudar	El impulso mínimo de 200 ms inicia o reanuda el ciclo de control de agua del Hydro-Control
19	20	Pausa/Restablecer	El impulso mínimo de 200 ms pone en pausa o restablece el ciclo de control de agua del Hydro-Control
21	22	Contador de agua	Entrada de impulso del contador de agua
23	24	Tanque de agua lleno	El ajuste del impulso mínimo de 200 ms indica que el tanque de agua está lleno
25		S/C	Sin conexión

Terminales	Nombre	Descripción
26	RS232 Rx	Línea de recepción de datos de RS232
27	RS232 Tx	Línea de transmisión de datos de RS232
28	RS232 Gnd	Tierra de RS232
29	RS485 A	Línea RS485 A para conexión con el sensor
30	RS485 B	Línea RS485 B para conexión con el sensor
31	Sensor +24 V	Conexión de +24 V CC para alimentar el sensor
32	+24 V CC	Entrada de alimentación eléctrica del sistema de +24 V CC
33	Sensor 0 V	Conexión de 0 V CC para alimentar el sensor
34	0 V CC	Entrada de alimentación eléctrica del sistema de 0 V CC
35	S/C	

1.3 Conector de comunicaciones y alimentación

1.4 Conector de fórmula remota (en Tarjeta de expansión opcional)

Terminales	Nombre	Descripción
36	Fórmula remota 1	Entradas de selección de fórmula remota. Se utilizan para cambiar la fórmula en el Hydro-Control mediante una señal
37	Fórmula remota 2	digital, binaria o DCB.
38	Fórmula remota 3	
39	Fórmula remota 4	
40	Fórmula remota 5	
41	Fórmula remota 6	
42	Fórmula remota 7	
43	Fórmula remota 8	
44	Fórmula remota 0 V	Señal de 0 V de selección de fórmula remota.

1.5 Conector de E/S analógico (en Tarjeta de expansión opcional)

Terminales		Nombre	Descripción
+	-		
45	46	Salida analógica 2	Salida analógica reservada para uso futuro.
47	48	Salida analógica 1	Salida analógica reservada para uso futuro.
49	50	Entrada analógica	Entrada analógica reservada para uso futuro.
51	52	Escala de peso	Entrada de escala de peso analógica para sistema de agua pesada.

2 Alimentación eléctrica

La unidad utiliza 24 V CC, con una clasificación de potencia nominal de 24 W incluido el sensor.

Suministro mínimo:	24 V CC, 1,25 A (30 W) Número de pieza 0116 de Hydronix		
Suministro recomendado:			
Importante:	Si se utiliza 24 V CC para entradas/salidas (válvulas, etc.), se debe alimentar desde un suministro eléctrico independiente hasta la unidad principal para reducir la probabilidad de interferencia entre los dos sistemas.		

3 Comunicaciones

3.1 RS485

La conexión RS485 se utiliza para comunicarse con un sensor de humedad Hydronix. Es posible cambiar los parámetros de funcionamiento y los diagnósticos del sensor desde el Hydro-Control.

3.2 RS232

La conexión RS232 se utiliza para la conexión con un terminal de operador remoto u ordenador por lotes para permitir la selección remota de fórmulas.

3.3 Puerto Ethernet Telnet

Permite las mismas operaciones disponibles en el RS232 utilizando el puerto Telnet (puerto 23).

4 Módulos de interfaz

4.1 Módulos OPTO-22

El Hydro-Control está equipado con módulos de entrada/salida conectables con aislamiento óptico, fabricados por OPTO-22. Hay disponible una gama de distintos módulos de entrada/salida en función del voltaje necesario.

Se suministran siete módulos de salida y cinco módulos de entrada. La salida de AGUA FINA DEBE estar conectada para que la unidad funcione correctamente. Todas las demás conexiones son opcionales y se pueden conectar según se necesite para cada configuración.

4.2 Opciones de voltaje

4.2.1 Tipos de módulos de entrada digital

Nº de pieza de Hydronix	Nº de pieza de OPTO-22	Descripción
0401	G4IDC5	10 – 32 V CC Módulo de entrada de CC estándar
0402	G4IAC5	90 – 140 V CA
0403	G4IAC5A	180 – 280 V CA

4.2.2 Tipos de módulos de salida digital

Nº de pieza de Hydronix	Nº de pieza de OPTO-22	Descripción
0404	G40DC5	5 – 60 V CC a 3 A (45°C), 2 A (70°C).
0405	G40AC5	12 – 140 V CA a 3 A (45°C), 2 A (70°C).
0406	G40AC5A	24 – 280 V CA a 3 A (45°C), 2 A (70°C).

5 Tarjeta de expansión (Número de pieza 0180 de Hydronix)

La Tarjeta de expansión es un complemento opcional que se puede utilizar para ofrecer más funciones. La tarjeta se puede añadir al sistema en cualquier momento y permite utilizar el sistema de agua pesada y las entradas de selección de fórmula remota.

5.1 Entradas analógicas

La tarjeta dispone de dos entradas analógicas que se pueden ejecutar a 4–20 mA o 0–20 mA (puede utilizar 0–10 V con una resistencia de conversión como se describe a continuación). En la actualidad únicamente se emplea una entrada para la entrada de escala de peso. La otra se reserva para uso futuro.

5.2 Salidas analógicas

La tarjeta dispone de dos salidas analógicas. Quedan reservadas para uso futuro.

5.3 Entradas de selección de fórmula

La tarjeta tiene 8 entradas de selección de fórmula para proporcionar control de fórmula utilizando entradas DCB, binarias o discontinuas. Se pueden configurar en las páginas Configuración y estado de E/S y se pueden emplear para cambiar la fórmula actual que está utilizando la unidad desde un sistema de control externo u otro dispositivo de selección de fórmula. Estas entradas sustituyen al módulo de fórmula remota del Hydro-Control V.

6 Diagramas de cableado de E/S

Se recomienda proteger cualquier cableado del inductor mediante un dispositivo de parada de emergencia que permita desconectar los dispositivos que se controlan desde la señal proporcionada por el Hydro-Control en caso de que surja algún problema.

6.1 Entradas digitales de cableado

Funciona de manera similar al lado de la bobina de un relé normalmente abierto. Para conectar el relé, aplique el voltaje correcto en los terminales.

Figura 10: Diagrama de cableado de entrada digital

6.2 Salidas digitales de cableado

Funciona de manera similar al lado de contacto sin corriente de un relé normalmente abierto. El Hydro-Control conecta el relé y, por tanto, cierra los contactos para el lado de salida. Tenga en cuenta que las salidas de CA tienen una corriente mínima de 20 mA.

Figura 11: Diagrama de cableado de salida digital

6.3 Entradas analógicas de cableado

Las entradas analógicas son entradas de circuito de corriente, que reciben una señal de 0– 20 mA o 4–20 mA. Esto se puede configurar en la página 2 de las páginas Configuración y estado de E/S. Se muestra la conexión con una Entrada analógica como en la Figura 12.

Figura 12: Diagrama de cableado de circuito de corriente de entrada analógica

El cableado del dispositivo conectado con la Entrada analógica dependerá de si el dispositivo dispone de un circuito autoalimentado o si recibe alimentación del propio circuito.

En la Figura 13 se muestra el diagrama de cableado para conectar un dispositivo analógico que no dispone de un generador. Estos sensores también se conocen como "sensores de dos hilos".

Figura 14: Conexión del circuito de corriente de un dispositivo con alimentación externa

En la Figura 14 se muestra el diagrama de cableado para conectar un dispositivo analógico que dispone de un suministro eléctrico independiente que alimenta el circuito de corriente.

Figura 15: Conexión de una señal de voltaje a la Entrada analógica

En la Figura 15 se muestra un método para conectar una señal de 0–10 V con el Hydro-Control. Es necesaria una resistencia en serie de 375 Ω . Se puede obtener colocando dos resistencias de 750 Ω en paralelo. Se recomienda el uso de resistencias con una tolerancia de ±0,1%.

6.4 Salidas analógicas de cableado

Las salidas analógicas procedentes del Hydro-Control están diseñadas como una fuente de corriente constante.

Están diseñadas para una futura ampliación.

Tenga en cuenta que todas las conexiones '-' para las entradas y salidas analógicas están conectadas con una masa analógica común.

6.5 Entradas de selección de fórmula de cableado

Figura 17: Cableado de entradas de selección de fórmula

Las entradas de fórmula son disipaciones de corriente de 2 mA. Se conectan a una señal de entrada de CC con una tensión nominal de 24 V (el rango de la tensión de CC en realidad es de 9–36 V). Existe una masa común para las ocho señales de entrada, tal como se muestra en la Figura 17.

7 Cables

7.1 Cable del sensor

El sensor debe estar conectado utilizando un cable de prolongación fabricado con un cable blindado (apantallado) de longitud adecuada de dos pares trenzados (4 núcleos en total) con 22 conductores AWG de 0,35 mm². Se recomienda utilizar un cable de calidad alta con un buen blindaje trenzado y también un blindaje metálico para minimizar la posibilidad de interferencias. Los tipos de cables recomendados son Belden 8302 o Alpha 6373.

Para alcanzar un rendimiento óptimo (y para cumplir las normativas de seguridad relevantes) todos los cables, incluidos los cables de comunicaciones y alimentación, se deben blindar y el blindaje debe estar conectado con el Hydro-Control.

El cable que va del sensor a la unidad de control debe colocarse alejado de cualquier equipo pesado y cables de alimentación asociados, en especial del cable de alimentación de la mezcladora. Si los cables no se separan, pueden producirse interferencias en la señal.

7.2 Cables analógicos

Los cables analógicos deben ser cables blindados de buena calidad. Deben separarse del equipo pesado y los cables de alimentación para evitar interferencias en la señal.

8 Puertos USB

El Hydro-Control tiene tres puertos USB integrados en la unidad para permitir la copia de seguridad, restauración y actualización del sistema. Cada uno de ellos puede admitir una tarjeta de memoria USB estándar.

Hydronix puede suministrar una conexión USB de montaje en panel con un cable de prolongación (Número de pieza 0175). Se trata de un cable de 1,5 m y la conexión de montaje en panel necesita un orificio de diámetro de 28 mm con un disyuntor de llave de 3 mm. El grosor máximo del panel es de 5,2 mm y se necesita una separación de 22 mm detrás del panel. Hydronix puede suministrar instrucciones de montaje detalladas.

Capítulo 4

1 Navegación por pantalla

El Hydro-Control es un dispositivo de pantalla táctil. Se puede navegar por la unidad tocando la propia pantalla para activar las funciones relevantes.

2 Árbol de menús

3 Pruebas básicas

Una vez completado el cableado, se puede conectar el Hydro-Control pulsando el botón de

alimentación en la esquina superior derecha marcado con el símbolo

La unidad ejecutará una prueba automática y arrancará el Hydro-Control. Aparecerá una pantalla de presentación seguida del número de versión de software antes de mostrarse la pantalla principal.

Tras iniciar el sistema correctamente, se recomienda que ponga en marcha el sistema probando primero el E/S y las comunicaciones de sensor mediante las instrucciones siguientes. Esta operación se debe realizar antes de configurar los parámetros del sistema.

3.1 Pruebas de sensor

El Hydro-Control utiliza una interfaz de serie RS485 para comunicarse con el sensor de humedad Hydronix en la mezcladora. Una vez que la unidad haya terminado de cargar, se mostrará la pantalla principal con un titular en centro que indica 'Buscando sensor en dirección xx' y que muestra la dirección del sensor que se está solicitando en ese momento.

Durante este periodo, se establece la salida de alarma para indicar un problema al sistema de control.

Una vez que la unidad ha buscado todas las direcciones RS485, debería encontrar el sensor y mostrar la lectura del mismo en la pantalla de tendencias.

Ejecute el procedimiento siguiente para probar que el sensor funciona adecuadamente:

Mostrar sin

- 1. Pulse el botón Mostrar escala sin escala. Se muestra el valor de sensor entrante en cuanto a las unidades sin escala (0 en aire, 100 en agua). No se trata de una lectura de porcentaje de humedad y permite ver el valor del sensor básico.
- 2. Mientras la mezcladora está vacía (con el sensor en aire), la lectura del valor de sensor debería estar entre 0 y 15 (este número variará en función de las diferencias de instalación).
- 3. Coloque un paño húmedo sobre la placa frontal cerámica del sensor. El valor de sensor debería elevarse hasta entre 70 y 90 (este número también variará en función de lo húmedo que esté el paño y la velocidad del cambio de señal dependerá de los ajustes de filtrado en el sensor). Esta prueba también se puede realizar colocando una mano sobre la placa frontal cerámica del sensor.

Si estas pruebas se realizan correctamente, podrá estar seguro de que la instalación del sensor y las comunicaciones con el Hydro-Control están funcionando. Pulse Mostrar

humedad humedad para cambiar de nuevo al modo de humedad.

3.2 Prueba del E/S

Se pueden seleccionar las pantallas Configuración y estado de E/S pulsando el botón Menú

Menú y, a continuación, pulsando el botón Configuración E/S.

Con esta operación se mostrará la primera página Configuración y estado de E/S, representada en la Figura 19, que se puede utilizar para probar las entradas y salidas digitales.

Figura 19: Configuración y estado de E/S – Página 1

El estado de las señales de entrada se puede ver en la parte superior derecha de la pantalla: las entradas desactivadas se muestran como un círculo gris y las entradas activadas como un círculo rojo. Las salidas del sistema de control externo se pueden activar y es posible marcar la entrada al Hydro-Control.

Para evitar que el Hydro-Control continúe respondiendo a las entradas que se reciben (por ejemplo, iniciar una mezcla cuando la señal de inicio está activada), se puede pulsar el botón Deshabilitar entradas. Mientras las entradas están deshabilitadas, el botón cambia a Habilitar entradas. Al cambiar de pantalla pulsando los botones Siguiente o Menú también se volverán a habilitar las entradas.

Se pueden activar y desactivar salidas individuales pulsando el círculo gris situado junto al texto que permite marcar el enlace con la entrada del sistema de control externo. Las salidas activadas se muestran con un círculo rojo (tal como se ha visto en la salida de 'Alarma' que se ha activado).

La **señal de admix** se utiliza para controlar en qué punto del ciclo de admix se define la salida de la mezcla. Si el parámetro está establecido en Todos, la salida de admix estará definida mientras el Hydro-Control está mezclando, lo que equivale a la misma función que el parámetro 'Todos' del Modo ocupado del Hydro-Control V. Puede encontrar información acerca del resto de opciones en la sección Control de admix en el Capítulo 5.

La **señal de depósito de agua lleno** se utiliza para indicar que la báscula de agua está llena. Si se configura, la señal de depósito de agua lleno también se puede utilizar para iniciar el apagado del sistema. Esto se puede utilizar junto con un SAI. Para configurar la señal de apagado, seleccione 'Apagado' en el cuadro de selección (Figura 19).

Config./estado d	le E/S - Pág. 2 de	e 2
Entradas analógicas Entrada escala peso: 0 Tipo en Peso actual: 0 kg Valor anál. en vacío: Peso en vacío: Valor anál. en lleno: Peso en lleno:	trada: 0-20mA 0 0 3400 100 kg	
Entrada analógica 2: 0 Tipo en	trada: Thermo-Tuff 🗸	
Guardar cambios	Siguiente	Menú

Figura 20: Configuración y estado de E/S – Página 2

La página 2 de las pantallas Configuración y estado de E/S se muestra en la Figura 20 y permite la configuración y la visualización de las entradas y salidas analógicas.

La primera entrada analógica es para la escala de peso y se puede configurar como una señal de 0–20 mA o 4–20 mA.

Una vez que se ha seleccionado el tipo de entrada, dicha entrada se debe establecer como un valor conocido y la Entrada de escala de peso debe marcarse. El valor de Entrada de escala de peso muestra 0 cuando está a 0 o 4 mA (en función del ajuste Input Type (Tipo de entrada)) y muestra 4095 cuando la entrada está a 20 mA.

La segunda entrada analógica y las salidas analógicas se reservan para uso futuro.

3.3 Pruebas de válvula y medidor de flujo

Para probar que las válvulas funcionan correctamente, siga este procedimiento:

- 1. Abra la primera página Configuración y estado de E/S tal como se describe en la sección anterior. Cuando la página esté abierta, la válvula del contador de agua se restablece a cero.
- 2. Pese un envase y colóquelo debajo de la entrada de agua para recoger el agua que se dosifica durante la prueba.
- 3. Abra la Válvula gruesa pulsando el icono 🛈 en la pantalla Válvula gruesa 🕕
- 4. Compruebe que la válvula se abre, que el agua fluye y que el contador de agua cuenta hasta Contador agua 0.
- 5. Cierre la Válvula gruesa pulsando el icono de nuevo.
- 6. Abra la Válvula fina pulsando el icono en la pantalla.
- 7. Compruebe que la válvula se abre, que el agua fluye y que el contador de agua cuenta.
- 8. Cierre la Válvula fina pulsando el icono de nuevo.
- 9. Pese el envase y el contenido para determinar cuánta agua se ha recogido. Registre esto y el valor de la lectura del Contador de agua en la pantalla.

Utilice la ecuación siguiente para determinar el flujo del contador de agua por impulso para la entrada en la pantalla Parámetros del sistema:

NB: Peso del agua en kilogramos = Volumen del agua en litros

4 Recalibración de la pantalla táctil

La pantalla táctil no debería necesitar calibración a menos que se produzcan problemas al tratar de seleccionar objetos en la pantalla. En ese caso, se debe recalibrar la pantalla táctil de la siguiente forma:

Figura 21: Parte superior del Hydro-Control que muestra el botón de recalibración

La calibración de la pantalla táctil se inicia pulsando el botón empotrado en la parte superior de la unidad con un objeto puntiagudo pequeño.

5

Figura 22: Ejemplo de una pantalla de calibración que muestra el objetivo

Una vez pulsado este botón, la pantalla cambiará a una pantalla en blanco con un pequeño objetivo en la misma similar al que se muestra en la Figura 22. Mediante un objeto puntiagudo pequeño y romo, toque la pantalla en la zona indicada hasta que se le indique que puede dejar de hacerlo. Esta operación se repetirá una serie de veces, tras lo cual el sistema mostrará una indicación para que se acepte la calibración. Acepte esta indicación para continuar.

Una vez calibrada la pantalla, el sistema debería cerrarse y reiniciarse pulsando el botón de alimentación brevemente y haciendo clic en 'Sí'. En caso de no hacerlo, puede que el sistema no guarde los ajustes de calibración de la pantalla.

5.1 Parámetros del sistema – Página 1

Parámetros del sistema

Parám. del sistema - Pág. 1 de 3								
Config. del agua			Config. control autom. sistema					
Modo de agua:	Medido	~	Ganancia proporcional:	5				
Impulsos por litro:	1		Ganancia integral:	0				
Tmpo. espera contador	agua: 15	s	Ganancia derivada:	0				
Suministro fino:	40	L	Ajustes seguim. autom. sisten	na				
Fluio de válvula fina:	0	L	Desviación mezcla inicial	0,1	%			
, Flujo de válvula gruesa:	4	L	Tiempo mezcla inicial	10	s			
Tmpo, activ, válvula fina	0,5	s	Desviación mezcla prehume	10,1	%			
Tmpo, desact, válvula fi	na: 0,5	s	Desvicción mozela consi	0.2	S 0/			
Usar solo válvula fina:			Tiempo mezcla seca:	10) %) {			
Tiempo promediado:	5	s	Desv. mezcla húmeda:	0.3	%			
Bucles de ciclo:	1		Tmpo. mezcla húmeda:	10	s			
Guardar cambios	Copia seguridad /Rest	1	Siguiente	Menú				

Cada uno de los elementos de la página de parámetros se describe en las páginas siguientes. Los elementos atenuados no son necesarios para el modo de agua seleccionado actualmente.

Configuración del agua

Parámetro	Unidades	Predeterminado	Rango
Modo de agua	Ninguna	Medido	Medido/Cronometrado/Pesado
Impulsos por litro	Impulsos por litro/galón	1	0,1–10.000 impulsos por litro 0–2641,7 impulsos por galón
Tiempo de espera de contador de agua	Segundos	5	0–100 s
Suministro fino	Litros/Galones	20	0–100 l
			0–26,4 galones
Flujo de válvula fina	Litros/Galones	0	0–100 l
			0–26,4 galones
Flujo de válvula gruesa	Litros/Galones	0	0–100 l
			0–26,4 galones
Tiempo de activación de válvula fina	Segundos	0,5	0–100 s
Tiempo de desactivación de válvula fina	Segundos	0,5	0–100 s
Usar solo válvula fina	Ninguna	No	Sí/No
Tiempo promediado	Segundos	10	0–100 s
Circuitos de ciclo	Ninguna	1	1–100
Resolución	Kg/lb	1	0–200

El valor **Modo de agua** controla cómo se mide el agua en la mezcladora. Si se utiliza un contador de agua para medir el agua dosificada en la mezcladora, el valor se debería establecer como 'Medido'. Si se utiliza un sistema de medición de peso, se debería seleccionar el valor 'Pesado' de Modo de agua. Se recomienda el uso del valor 'Cronometrado' de Modo de agua cuando haya problemas con el dispositivo de medición de agua. En el Capítulo 5 puede encontrar más información sobre la selección de modos de agua.

Impulsos por litro establece el número de impulsos que se reciben al dosificar un litro de agua en la mezcladora en el modo Medido.

Tiempo de espera de contador de agua representa la cantidad de tiempo después de abrir la válvula de agua que el sistema esperará antes de emitir una alarma si no ha recibido un impulso del contador de agua. **Suministro fino** es la cantidad de agua al final de la dosis calculada o preajustada que se alimenta utilizando únicamente la válvula fina.

Flujo de válvula fina es la cantidad de agua que continúa circulando una vez que se ha cerrado la válvula fina.

Flujo de válvula gruesa es la cantidad de agua que continúa circulando una vez que se ha cerrado la válvula gruesa. Esta válvula se utiliza cuando la fase de prehumedecimiento se ejecuta en modo de preajuste.

Tiempo de activación de válvula fina representa la cantidad de tiempo que se necesita para activar la válvula fina. Esta información se debe extraer de la hoja de datos del fabricante de la válvula.

Tiempo de desactivación de válvula fina representa la cantidad de tiempo que se necesita para desactivar la válvula fina. Esta información se debe extraer de la hoja de datos del fabricante de la válvula.

Los tiempos de activación/desactivación de la válvula se utilizan para establecer el impulso mínimo de la válvula durante la incorporación del modo AUTO, para evitar que las válvulas resulten dañadas debido a un uso excesivo.

Usar solo válvula fina establece el sistema para que sólo dosifique agua utilizando la válvula fina. En este modo nunca se activará la válvula gruesa.

Tiempo promediado representa la cantidad de tiempo al final de las fases de mezcla seca y húmeda que el sistema utilizará para adoptar un valor promediado de la lectura de humedad.

Circuitos de ciclo es un ajuste que se utiliza para repetir la incorporación de mezcla húmeda y las fases de mezcla húmeda. Normalmente sólo es útil para las pruebas de linealidad y, por tanto, se debería dejar establecido como 1.

Resolución establece la resolución del valor de la báscula para sistemas seleccionados para utilizar agua pesada. Este valor no se muestra a menos que el modo de agua se defina en agua pesada.

Parámetro	Unidades	Predeterminado	Rango
Ganancia proporcional	Ninguna	5	-100–100
Ganancia integrada	Ninguna	0	-100–100
Ganancia derivada	Ninguna	0	-100–100

Configuración del control automático del sistema

Los parámetros **Ganancia proporcional, Ganancia integrada** y **Ganancia derivada** controlan las válvulas de agua durante el modo AUTO. Comparan el valor de sensor actual con el valor final y generan una señal de control para la velocidad de incorporación de agua (durante el proceso, la velocidad de incorporación de agua se controla inicialmente abriendo las válvulas fina y gruesa completamente y, a medida que se reduce el error, cerrando la válvula gruesa y variando la velocidad de impulso de la válvula fina). La optimización de estos parámetros se describe en la Guía del operador, capítulo 'Using Moisture Control' (Uso del control de humedad).

Estos parámetros del sistema se pueden anular desde cada fórmula.
Parámetro	Unidades	Predeterminado	Rango
Desviación de mezcla inicial	%	0,1	0–100
Tiempo de mezcla inicial	Segundos	10	0–100
Desviación de mezcla prehúmeda	%	0,1	0–100
Tiempo de mezcla prehúmeda	Segundos	10	0–100
Desviación de mezcla seca	%	0,1	0–100
Tiempo de mezcla seca	Segundos	10	0–100
Desviación de mezcla húmeda	%	0,1	0–100
Tiempo de mezcla húmeda	Segundos	10	0–100

La función Seguimiento automático utiliza los parámetros **Desviación de mezcla inicial**, **Tiempo de mezcla inicial**, **Desviación de mezcla prehúmeda**, **Tiempo de mezcla prehúmeda**, **Desviación de mezcla seca**, **Tiempo de mezcla seca**, **Desviación de mezcla húmeda** para controlar el momento en el que el sistema finaliza las fases de mezcla inicial, prehúmeda, seca y húmeda. Durante la fase de mezcla inicial, prehúmeda, seca o húmeda, si la variación del valor del sensor es menor que la desviación de mezcla especificada para el tiempo de mezcla, la fase de mezcla pasará a la siguiente fase.

Consulte la sección sobre seguimiento automático en la página 65 para obtener más detalles.

Estos parámetros del sistema se pueden anular desde cada fórmula.

5.2 Parámetros del sistema – Página 2

Al hacer clic en el botón Siguiente sistema:

Siguiente	Э	
	/	,

, se accede a la siguiente página Parámetros del

	Parám. del s	sistema - P	ág. 2 de 3	
Fecha/hora	a de sistema	Editar	Ajustes generales	
Hora:	15:29	fecha y	Español	~
Fecha:	01/05/2020	hora	Registros Máx. Mix:	100
Zona hor.:	GMT Standard Time		Archivo	
alarma de o Alarma enti	configuración rada cemento	Alar. mezc	la dem. húmeda	
Alarma fallo	o contador agua	Alarma lím	ite agua excedido	
Alar. fuga e	n válvula de agua	Alar. tmpo	. máx. mezcla seca sup	erado 🧹
Alar. "no se	e requiere agua"	Alar. tmpo.	. máx. mezcla húmeda	super.
Alarma der	nasiada agua calculada	Alarma fall	o de sensor	
Alar. mezcl	a demas. seca	Alar. palas	mezcl. deterior.	
Tmpo. pala	s mezcl. deterior.	0 s Valor palas	s mezcl. deterior.	10 US
Guarda cambio	s Actualiz	zar S	iguiente	Menú

Figura 24: La segunda pantalla de Parámetros del sistema

Los ajustes de Fecha y hora del sistema se utilizan para ajustar el reloj en el Hydro-Control. Se emplea para registrar tiempos respecto a los registros de mezcla. Al pulsar el botón Editar

fecha y hora se muestra la pantalla siguiente que permite ajustar la fecha y la hora:

Figura 25: Cambio de la fecha y la hora

La hora se puede introducir seleccionando los cuadros de horas (0–24) y minutos (0–59). La zona horaria se puede establecer utilizando las flechas.

Ajustes generales

Parámetro	Unidades	Predeterminado	Rango
Idioma	Ninguna	Inglés	Varios idiomas
Registros de mezcla máx.	Ninguna	100	1-1000
Archivado	Ninguna	Verdadero	Verdadero/Falso

El parámetro Idioma establece el Hydro-Control para que muestre varios idiomas.

El parámetro **Registro de mezcla máx.** limita el número máximo de registros de mezcla guardados en la base de datos.

Cuando se seleccione el parámetro de **Archivado**, el HC06 guardará todos los datos del registro de mezcla que superen el límite de los registros de mezcla máx. para un archivo de archivado. Una vez que se ha alcanzado el límite de los registros de mezcla máx., los registros de mezcla que se eliminen de la base de datos principal se copiarán en el archivo de archivado. Si se introduce una memoria USB en el HC06 y se realiza una copia de seguridad, los archivos de archivado se copiarán a la memoria USB. De esta forma, el usuario podrá mantener un registro de los registros de mezcla antiguos.

Configuración de alarmas

La sección Configuración de alarmas de la página Parámetros del sistema permite deshabilitar cada una de las alarmas del sistema. Las alarmas se describen en la Guía del operador, capítulo 'Configuración de alarmas'.

Al final de un lote, si el valor de sensor no ha caído por debajo de Valor de palas de mezclador deterioradas antes de que finalice el Tiempo de palas de mezclador deterioradas, se activa la Alarma de palas de mezclador deterioradas.

5.3 Parámetros del sistema – Página 3

Siguiente

Al hacer clic en el botón Siguiente , se muestra la página de supervisión de voltajes y temperaturas internas. Se trata de datos del sistema puramente informativos.

La pantalla que aparece en la Figura 26 muestra los parámetros actuales disponibles desde el Hydro-Control y se utiliza para fines de supervisión diagnóstica.

C Temp. máx.: 59 °C Temp. mín.: 35 °C 3,3 V 3.3 V
3,3 V ✓ Voltaje máx.: 3.3 V Voltaje mín.: 3.3 V 5 V ✓ Voltaje máx.: 4.8 V Voltaje mín.: 5 V
V Voltaje máx.: 3.3 V Voltaje mín.: 3.3 V 5 V V Voltaje máx.: 4.8 V Voltaje mín.: 5 V 12 V
5 V V Voltaje máx.: 4.8 V Voltaje mín.: 5 V 12 V
√ Voltaje máx.: 4.8 V Voltaje mín.: 5 V 12 V
12 V
V Voltaje máx.: 11.9 V Voltaje mín.: 10.9 V
V Voltaje máx.: 11.9 V Voltaje mín.:

Figura 26: Pantalla de supervisión de temperatura y voltaje

5.4 Configuración del agua pesada

Para utilizar la función de agua pesada, se debe acoplar una Tarjeta de expansión en el Hydro-Control. Si no está disponible, entonces los parámetros aparecerán atenuados.

El sistema de agua pesada se configura desde la página 2 de Configuración y estado de E/S. Siga las instrucciones que aparecen a continuación para realizar la configuración inicial y calibrar la entrada desde la escala de peso.

Config./estado	de E/S - Pág. 2 de 2
Entradas analógicas Entrada escala peso: 0 Tipo o Peso actual: 0 kg Valor anál. en vacío: Peso en vacío: Valor anál. en lleno:	entrada: 0-20mA v 0 v 3400
Peso en lleno: Entrada analógica 2: 0 Tipo o	100 kg entrada: Thermo-Tuff 🗸
Guardar cambios	Siguiente Menú

Figura 27: Página de configuración del agua pesada

Con el tanque de agua vacío, copie el valor de 'Entrada de escala de peso' que aparece en la página de estado (en la Figura 27) en el campo 'Valor analógico si está vacío'.

A continuación, ajuste el Hydro-Control para que utilice el agua pesada. Para ello, diríjase a la primera página Parámetros del sistema (que se muestra en la sección 0) y establezca el modo de agua del sistema como Pesado. Una vez hecho esto, el Hydro-Control activará la salida 'Llenado de tanque de agua' para abrir la válvula y llenar el tanque de agua hasta un nivel alto.

Cuando el tanque haya alcanzado el nivel alto, el Hydro-Control recibirá la señal de entrada 'Tanque de agua lleno'. Regrese a la página de estado (en la Figura 27) y copie el número del valor 'Entrada de escala de peso' en el campo 'Valor analógico si está lleno'.

A continuación, introduzca la cifra de 'Peso si está lleno' para el tanque de agua y pulse el botón 'Guardar cambios'.

6 Configuración del sensor

Con un sensor conectado, los ajustes y los parámetros de medición se pueden cambiar mediante las páginas de configuración del sensor, a cuya área se puede acceder desde la

pantalla principal pulsando el botón del menú y después el botón de configuración del

Config. de sensor

sensor En esta sección se describen brevemente las opciones disponibles en las pantallas. Para obtener información más detallada sobre los parámetros disponibles, consulte la guía del usuario del sensor relevante.

6.1 La pantalla de configuración del sensor – Página 1

C	opfiq	dol conco	r Dá	a 1 do 5	
	Jing. d	uer senso	- F c	ig. Tue 5	
ld. del sensor					
Juego placas: 38	3C43E0	Nodo 11	<u>∙</u> Nº o	de sensor: cv	
tipo de producto H	ydroMi×				
Calibración material	А	В	с	D	mode
% humedad:	0	0	0	0	modo F 💽
Salidas analógicas -				Promedio	
Tipo salida	0-20mA(0-10v) 🔽		Retardo prom./mant	er 1 s
Variable O/P 1	% hume	dad filtrada	•	modo de promedio	crudo 🗾
Variable O/P 2	% hume	dad promedio	•	% humed Lím. superior: 20	lad Sin escala 100
% bajo 🛛 🧠 a	lto 20			Lím. inferior: 0	0
Grabar en sensor			Sig	guiente	Menú

Figura 28: La pantalla de configuración del sensor – Página 1

Identificación del sensor

En esta sección se muestra el identificador del juego de placas, el número de identificación de Nodo en la red RS485 y se puede establecer un nombre de sensor.

Calibración de material

En esta sección se muestra la calibración de material actual que se ha descargado al sensor. Se actualiza cuando se cambia la fórmula del Hydro-Control VI.

Salidas analógicas

Esta sección permite ajustar la configuración de las salidas analógicas del sensor. Como el Hydro-Control VI se comunica con el sensor mediante RS485, las salidas analógicas se pueden usar independientemente del control principal mismo. Como la calibración de material se descarga al sensor cuando se cambia la fórmula, si la salida analógica se configura como salida de humedad filtrada, la salida analógica seguirá el valor de humedad de Hydro-Control VI.

Promedio

Esta sección configura la función de promedio del sensor. Normalmente no se usa en aplicaciones de mezcladora.

Si se cambia cualquier ajuste, se debe descargar al sensor mediante el botón 'Grabar en sensor'.

6.2 La pantalla de configuración del sensor – Página 2

El botón Siguiente muestra la segunda pantalla, tal y como aparece en la Figura 29.

Config. del sens	or - Pág. 2 de 5
Procesam. de señal	Entr./salidas digitales
Duración filtrado 2.5 🔹 s	Uso de I/P 1: No utilizado
Filtro DSP: Muy ligera	Uso de IO/P 2: No utilizado
Velocidad salto +Ligera	alarma de alta temperatura
Velocidad salto - Ligera	alarma de baja temperatura
filtro incluyen: 0	
Grabar en sensor	Siguiente Menú

Figura 29: La pantalla de configuración del sensor – Página 2

Procesamiento de la señal

Esta sección permite ajustar las opciones de procesamiento de la señal del sensor. Puede resultar necesario ajustarlas en función de la mezcladora que se utilice para mejorar la estabilidad y la respuesta de la lectura del sensor.

Entradas/salidas digitales

Esta sección permite ajustar las opciones de entrada/salida digital.

Si se cambia cualquier ajuste, se debe descargar al sensor mediante el botón 'Grabar en sensor'.

6.3 La pantalla de configuración del sensor – Página 3

El botón Siguiente muestra la tercera pantalla, tal y como aparece en la Figura 30.

Sensor Configuration - Page 3 of 5											
Ajustes de fál	brica Frecuencia A 200 02 MHz	amplitud		compens. de Frecuencia	Amplitud						
Aire	839.98 MHz	666.8	Resonador	0.0075	0.0765						
	aire	agua	Material	0	0						
Agua nueva Aire nuevo	MHz MHz		Modo de med	dición							
Brazos de Or	rbiter		Sin escala 1:	Modo	/ •						
Tipo brazo:	ORBA2	- 560mm 🔹	Sin escala 2:	Modo I	= •						
Grabar en sensor		AutoCal	Siguie	ente	Menú						

Figura 30: La pantalla de configuración del sensor – Página 3

Ajustes de fábrica

Esta sección permite ajustar la calibración de fábrica del sensor. Esto es necesario si el sensor es un Hydro-Probe Orbiter y se cambia el brazo o si el sensor es un Hydro-Mix y se sustituye la placa frontal cerámica.

Para ajustar la calibración de fábrica, asegúrese de que la placa frontal del sensor esté en aire y pulse el botón 'Lectura de aire'. Tras una breve demora, se mostrarán la nueva frecuencia de aire y el ajuste de amplitud en los cuadros de entrada. A continuación sujete el sensor de forma que la placa frontal esté sumergida en agua, de acuerdo con las instrucciones de la guía del usuario del sensor y pulse el botón 'Lectura de agua'.

Un método alternativo a la calibración de fábrica consiste en utilizar la función de calibración automática. Se puede utilizar para simplificar el proceso de calibración de fábrica. Tras realizar la calibración automática, puede ser necesario recalibrar las fórmulas.

Para utilizar la función de calibración automática, asegúrese de que la placa frontal del sensor esté en aire y pulse el botón de calibración automática. Tras una breve demora, el Hydro-Control mostrará, mediante una indicación, si la calibración automática se ha realizado correctamente o no.

Brazos de Orbiter

Esta sección permite ajustar el tipo de brazo.

Coeficientes de compensación de temperatura

Esta sección permite cambiar los parámetros de compensación de temperatura. Puede ser necesario cambiar estos ajustes cuando se utilice un Hydro-Probe Orbiter y cambiar el brazo de Orbiter. Se incluye una nota de ingeniería con los brazos de Orbiter relevantes, que indica detalladamente los ajustes que deben realizarse. Con algunos sensores de Hydro-Mix se establecen estos coeficientes para cada sensor en la fábrica y no se deben cambiar.

Modo de medición

Permite seleccionar diferentes modos de medición.

Si se cambia cualquier ajuste, se debe descargar al sensor mediante el botón 'Grabar en sensor'.

6.4 La pantalla de configuración del sensor – Página 4

El botón Siguiente muestra la cuarta pantalla, tal y como aparece en la Figura 31.

	Config	del sensor - Pág. 4 de 5	
Temperatura Electrónica Resonador Material	32.7 ℃ 31.8 ℃ 31.8 ℃	Extremos de temperatura Máx. 37.4 °C Mín. 22.0 °C	Estado E/S Datos no válido Entr. digital 1
Comms Errores Mensajes % Errores	23 94270 0.02	Firmware Versión HS0102 v1.01.00 Suma comį5F1F	E/S digital 2 Demasiado fría Dem. caliente
% Errores	0.02		
Prueba salida analógica		Reset Comms Siguiente	Menú

Figura 31: La pantalla de configuración del sensor – Página 4

Temperatura

En esta sección se muestran las lecturas de temperatura actuales.

Extremos de temperatura

En esta sección se muestran las temperaturas máxima y mínima que el sensor ha tenido durante la puesta en marcha.

Firmware

En esta sección se muestra el número de versión actual del firmware y la suma de comprobación con finalidades de diagnóstico.

Estado de E/S

En esta sección se muestra el estado actual de las entradas y salidas digitales y otras señales internas.

Comunic.

Esta sección muestra, junto con el número de error, todos los mensajes de comunicación entre el Hydro-Control y el sensor. El número de error se puede usar para identificar problemas de comunicación.

Prueba de salida analógica

Si se pulsa el botón 'Prueba de salida analógica' se muestra la ventana que aparece en Figura 32, que permite forzar las dos salidas analógicas a valores conocidos. Esto es útil para comprobar las conexiones con sistemas externos.

Prueba	sal	lida	ana	lóg	ica														
							Sali	da '	1										Actual
0mA	e.		i.	1		1			1	1		29	1	1	1	i.	. 1	20mA	0.0
							Sali	da 2	2									2011A	Actual
0mA	i.		1	,		1			1		r		1	1		i.	4	20mA	0.0

Figura 32: Los controles de la prueba de salida analógica

6.5 La pantalla de configuración del sensor – Página 5

El botón Siguiente muestra la quinta pantalla, tal y como aparece en la Figura 33.

Figura 33: La pantalla de configuración del sensor - Página 5

En esta pantalla se muestra información acerca de la lectura del sensor que se puede usar con finalidades de diagnóstico.

fórmula.

7 Parámetros de fórmula

Desde la pantalla principal, si se pulsa el botón Menú y, a continuación, el botón Descripción general de fórmula Descripc. gral., se mostrará la pantalla Descripción general de

7.1 Pantalla Descripción general de fórmula

Descripción fórmula						
Nº de fórmula	Nombre de fórmula	Modo control	Peso en seco kg			
1		Automático	0			
				Buscar fórmula		
Crear fórmula	Eliminar fórmula	Editar		Menú		

Figura 34: Pantalla Descripción general de fórmula

En esta pantalla se enumeran las fórmulas configuradas actualmente en el Hydro-Control. Al seleccionar una de ellas pulsando el texto en el cuadro de lista, y, a continuación, pulsando el botón Editar fórmula, se muestra el editor de fórmulas.

7.2 Editar fórmula – Página 1

En la primera pantalla figuran los detalles de la fórmula, la incorporación de agua y los tiempos de incorporación de material/mezcla.

Editar fórmula - Pág. 1 de 3						
Detalles de fórmu	la					
№ de fórmula:	102	Nº de lo	te:	212		
Nombre de fórmu	ı					
Incorpor. de agua	9			Tiempos incorpor. material/mez	cla	
			J	Peso en seco:	2000	kg
Agua de prehum	ed.:	0	L	Peso cemento:	500	kg
Límite agua de pr	ehumed.:	500	L	Tiempo espera cemento:	0	s
Agua principal:		150	L	Tiempo mezcla inicial:	0	s
Límite agua princ	ipal:	500	L	Tmpo. mezcla prehumed.:	0	s
Ajuste agua princ	ipal:	0	L	Tiempo mezcla seca:	20	s
				Tmpo. mezcla húmeda:	20	s
Guardar cambios	De	oscrip ón ormula		Siguiente	Mer	าน์

Figura 35: Editar fórmula – Página 1

Detalles de la fórmula

Parámetro	Unidades	Predeterminado	Rango
Número de fórmula	Ninguna	1	1–99.999
Número de lote	Ninguna	0	0–99.999
Nombre de la fórmula	Entrada de texto libre		25 caracteres de longitud

El parámetro **Número de fórmula** es el número de la fórmula en el sistema. Las fórmulas se pueden seleccionar por número desde un sistema de control de lotes externo utilizando las 8 entradas de fórmula digital (disponibles en la Tarjeta de expansión opcional del Hydro-Control VI) o utilizando el protocolo de comunicaciones en serie. También se muestran en orden numérico en el selector de fórmulas disponible desde la página de inicio, o bien en la pantalla Descripción general de fórmula.

El parámetro **Número de lote** es un número que aumenta cada vez que se completa cada lote de una fórmula. Se puede utilizar para rastrear un lote que se haya realizado.

El parámetro **Nombre de la fórmula** es un campo de entrada de texto libre de un máximo de 25 caracteres que se puede utilizar para proporcionar un nombre significativo a la fórmula que se muestra en el cuadro de selección de fórmula y en la pantalla principal.

Parámetros de incorporación de agua

Parámetro	Unidades	Predeterminado	Rango
Incorporación paso 2	Ninguna	No	Sí/No
Agua de prehumedecimiento	Litros/Galones	0	0–999 litros 0–264 galones
Límite de agua de prehumedecimiento	Litros/Galones	500	0–999 litros 0–264 galones
Agua principal	Litros/Galones	0	0–999 litros 0–264 galones
Límite de agua principal	Litros/Galones	500	0–999 litros 0–264 galones
Ajuste de agua principal	Litros/Galones	0	-999,9 – 999,9 litros -264–264 galones

La opción **Incorporación paso 2** se utiliza en el modo Preajuste y CALC y cambia la Incorporación de agua principal cuando se ejecuta en modo Preajuste para su uso con determinados aditivos. Esta cuestión se describe en el Capítulo 5, sección sobre Control de admix.

El parámetro **Agua de prehumedecimiento** define la cantidad de agua que se debería dosificar en la mezcladora durante la fase de prehumedecimiento del ciclo de mezclado.

El parámetro **Límite de agua de prehumedecimiento** define la cantidad máxima de agua que se añadirá cuando el sistema se esté ejecutando con el agua de prehumedecimiento en modo AUTO, antes de que el sistema emita una alarma.

El parámetro **Agua principal** define la cantidad de agua que se añade a la mezcla durante la fase de incorporación de agua principal del ciclo de mezclado cuando se ejecuta en modo de preajuste.

Si la fase de incorporación de agua principal se está ejecutando en modo CALC y si la cantidad de incorporación de agua calculada es mayor que el **Límite de agua principal**, el sistema activará una alarma. Si la fase de incorporación de agua principal se está ejecutando en modo AUTO y la cantidad de agua dosificada alcanza el **Límite de agua principal**, el sistema dejará de añadir agua y activará una alarma.

El parámetro **Ajuste de agua principal** ajusta el valor final de la fórmula de modo que se pueda hacer temporalmente más húmeda o seca para mezclas especiales.

Tiempos de incorporación de material/mezcla

Parámetro	Unidades	Predeterminado	Rango
Peso en seco	kg/lbs	0	0–32000 kg
			0–70547 lbs
Peso de cemento	kg/lbs	0	0–32000 kg
			0–70547 lbs
Tiempo de espera de cemento	Segundos	0	0–999 s
Tiempo de mezcla inicial	Segundos	0	0–999 s
Tiempo de mezcla de prehumedecimiento	Segundos	0	0–999 s
Tiempo de mezcla seca	Segundos	0	0–999 s
Tiempo de mezcla húmeda	Segundos	0	0–999 s

El parámetro **Peso en seco** es el peso de todos los ingredientes de la fórmula, tal como se han pesado, en su estado seco. Con áridos, se debe hacer sin agua libre (el peso en el valor SSD). Debe incluir el peso del cemento en la mezcla. Se utiliza como la base del modo de cálculo.

El parámetro **Peso de cemento** es la cantidad de cemento añadido a la mezcla. Se utiliza para calcular la proporción de agua/cemento en el registro de mezcla.

El parámetro **Tiempo de mezcla de prehumedecimiento** es el tiempo durante el que el sistema mezclará tras añadir el agua de prehumedecimiento, antes de activar la salida Prehumedecimiento realizado y pasar a la fase siguiente.

El parámetro **Tiempo de espera de cemento** define el tiempo que el Hydro-Control esperará tras enviar la señal Prehumedecimiento realizado para que el sistema de control de lotes añada el cemento. Si la señal Entrada de cemento no se ha recibido al finalizar este plazo, activará la alarma de tiempo de espera de cemento.

El **Tiempo de mezcla inicial** es el período de tiempo durante el cual el sistema realiza la mezcla antes de añadir el agua de prehumedecimiento. El **Tiempo de mezcla prehúmeda** es el período de tiempo durante el cual el sistema realiza la mezcla después de añadir el agua de prehumedecimiento y antes de emitir la señal de finalización del prehumedecimiento. El **Tiempo de mezcla seca** es el período de tiempo durante el cual el sistema realiza la mezcla después de emitir la señal de finalización del prehumedecimiento. El **Tiempo de mezcla seca** es el período de tiempo durante el cual el sistema realiza la mezcla después de emitir la señal de finalización del prehumedecimiento (o la señal de entrada de cemento, si esta se utiliza) antes de pasar a añadir el agua. El **Tiempo de mezcla húmeda** es el período de tiempo durante el cual el sistema realiza la mezcla después de añadir el agua y antes de emitir la señal de finalización de la mezcla.

Si se utiliza la función Seguimiento automático, los tiempos de mezcla pasan a ser el doble y se utilizan como tiempos de mezcla máximos. Para obtener más información acerca del uso de la función Seguimiento automático, consulte Capítulo 5 Diseño del sistema, sección 4.4 Seguimiento automático.

7.3 Editar fórmula – Página 2

Siguiente

Al pulsar el botón Siguiente en la parte inferior de la pantalla se muestra la segunda página del editor de fórmulas con los ajustes de control de mezcla, seguimiento automático local, admix y corrección de temperatura.

Editar fórmula - Pág. 2 de 3							
Control mezcla Método control de agua de prehumed.:	Preajuste Tolerancia positiva: 0.2	2 %					
Valor final humedad prehumed.:	6.8 % Tolerancia negativa: 0.2	2 %					
Método control:	Cálculo 🔽						
Valor final humedad:	10 % Unscaled Mode: mo	odo F					
Ajustes seguimiento autom. local Activación mezcla inicial:	Activación mezcla seca:						
Activación mezcla prehumedecimier	Activación mezcla húmeda:						
Tiempo mezcla inicial: 10	s Tiempo mezcla seca: 10	s					
Desviación mezcla inicial: 0.06	% Desviación mezcla seca: 0.0	06 %					
Tiempo mezcla prehumedecimie 10	s Tmpo. mezcla húmeda: 10	l s					
Desviación mezcla prehumedeci 0.06	% Desviación mezcla húmeda: 0.0	06 %					
Guardar cambios Descripci ón fórmula	Siguiente	enú					

Figura 36: Editar fórmula – Página 2

Control de mezcla

Parámetro	Unidades	Predeterminado	Rango
Método de control de agua de prehumedecimiento	Ninguna	Preajuste	Preajuste/Auto/Cálculo
Valor final de humedad de prehumedecimiento	%	8	0–99,9%
Método de control	Ninguna	Preajuste	Preajuste/Auto/Cálculo
Valor final de humedad	%	10	0–99,9%
Tolerancia positiva	%	2,75	0–99,9%
Tolerancia negativa	%	2,75	0–99,9%

El parámetro **Método de control de agua de prehumedecimiento** cambia el método que se utiliza para controlar la incorporación de agua de prehumedecimiento. Si el método se establece como Preajuste, se añade una cantidad fija de agua definida por el parámetro **Agua de prehumedecimiento** en la sección Incorporación de agua de la página 1 de los parámetros de fórmula. Si el método se establece como Auto, el agua se añade en modo AUTO para alcanzar el valor final definido como **Valor final de humedad de prehumedecimiento**.

El parámetro **Método de control** define la forma de añadir el agua principal. Si se establece como Preajuste, el sistema añadirá la cantidad fija de agua definida como el parámetro **Agua principal** en la sección Incorporación de agua de la página 1 de la fórmula. Si el método se establece como Auto, el agua se añade para alcanzar el valor final definido en **Valor final de humedad**. Si el método se establece como Cálculo, el agua se añade en función de un valor calculado mediante los parámetros de calibración, el **Valor final de humedad** y la lectura promedio tomada durante la fase Mezcla seca del ciclo de mezclado.

Los parámetros **Tolerancia positiva** y **Tolerancia negativa** se utilizan al final de la fase Mezcla húmeda. Si la diferencia entre el valor de humedad promedio tomado al final de la fase de mezcla húmeda y el valor final es mayor que la Tolerancia positiva por encima del valor final, o bien mayor que la Tolerancia negativa por debajo del valor final, se activan la Alarma de mezcla demasiado húmeda o la Alarma de mezcla demasiado seca. En modo AUTO, el parámetro **Tolerancia negativa** también se utiliza como una banda muerta para el valor final.

Ajustes de seguimiento automático local

Seguimiento automático es la característica que permite configurar el sistema para medir la estabilidad o la homogeneidad de la mezcla. Si el valor de sensor está dentro de una determinada desviación para una duración definida, esta función permite finalizar el tiempo de mezcla con antelación.

Parámetro	Unidades	Predeterminado	Rango
Activación de mezcla inicial	Ninguno	No	Sí/No
Activación de mezcla prehúmeda	Ninguno	No	Sí/No
Activación de mezcla seca	Ninguno	No	Sí/No
Activación de mezcla húmeda	Ninguna	No	Sí/No
Control de seguimiento automático local	Ninguna	No	Sí/No
Desviación de mezcla seca	%	0,1	0 – 100%
Tiempo de mezcla seca	Segundos	10	0 – 100 s
Desviación de mezcla húmeda	%	0,1	0 – 100%
Tiempo de mezcla húmeda	Segundos	10	0 – 100 s

Los parámetros Activación de mezcla inicial, Activación de mezcla prehúmeda, Activación de mezcla seca y Activación de mezcla húmeda se pueden utilizar para establecer que la función Seguimiento automático se utilice en cualquiera de las fases de mezcla.

Si la opción **Control de seguimiento automático local** está definida, los parámetros de Seguimiento automático definidos en la fórmula anulan los parámetros definidos en los Parámetros del sistema.

La función Seguimiento automático utiliza los parámetros **Desviación de mezcla seca**, **Tiempo de mezcla seca**, **Desviación de mezcla húmeda** y **Tiempo de mezcla húmeda** para controlar el momento en el que el sistema finaliza las fases de mezcla seca y húmeda. Durante la fase de mezcla seca o húmeda, si la variación del valor del sensor es menor que

la desviación de mezcla especificada para el tiempo de mezcla, la fase de mezclado pasará a la siguiente fase.

Consulte la sección sobre seguimiento automático en la página 65 para obtener más detalles.

7.4 Editar fórmula – Página 3

Al pulsar el botón Siguiente, aparecerá la tercera página del editor de fórmulas. Incluye opciones para los Ajustes de modo de cálculo y los Ajustes de modo automático.

Editar fórmula - Pág. 3 de 3					
Ajustes modo cálculo		Ajustes modo autom.			
Comp. humedad prehumed.:	-3,6463				
Ganancia humedad prehumed.:	0,1818	Ganancia proporcional	5		
Desviación humedad 1:	-1,9813	Ganancia integral:	0		
Ganancia humedad 1:	0,1673	Ganancia derivada	0		
	-1,9813	Ajustes de admix			
	0,1673	Admix habilitado:	0 %		
		Cantidad de admix:	0		
our, valore pre bug, per uequa		Ajustes corrección de temperatura			
Restabl.		Punto de ajuste temperatura:	20		
Calibración		Coeficiente temperatura:	0		
Guardar cambios	ripci n nula	Siguiente	Menú		

Figura 37: Editar fórmula – Página 3

Ajustes de modo de cálculo

Parámetro	Unidades	Predeterminado	Rango
Desviación de humedad 1	%	-3,6463	-100–100%
Ganancia de humedad 1	%/US	0,1818	0–100%/US
Desviación de humedad 2	%	-3,6463	-100–100%
Ganancia de humedad 2	%/US	0,1818	0–100%/US

Los ajustes de modo de cálculo se generan automáticamente al calibrar la fórmula desde un lote adecuado. No es necesario cambiar estos parámetros. Una vez calibrada la fórmula, si la humedad se muestra de forma incorrecta, se pueden restablecer los parámetros de calibración a sus valores predeterminados pulsando el botón Restablecer calibración Restablecer calibración

Calibración. Después de restablecer la calibración, será necesario volver a calibrar la fórmula.

El proceso de calibración se describe con mayor detalle en la Guía del operador.

Ajustes de admix

Parámetro	Unidades	Predeterminado	Rango
Admix habilitado	%	0	0–100%
Cantidad de admix	Kg/lbs	0	0–999,9 kg 0–70547 lbs

El parámetro **Admix habilitado** se utiliza para definir el momento en el que se activa la señal de salida de admix durante la incorporación de agua principal. Se define como un porcentaje de la cantidad total de agua principal. Por ejemplo, si la incorporación de agua principal es 70 litros y la opción Admix habilitado se establece como 50%, la señal de admix se activará cuando el agua añadida alcance 35 litros.

El parámetro **Cantidad de admix** se utiliza para definir la cantidad de admix utilizada en una fórmula. Sólo se emplea para la visualización en el Registro de mezcla.

Ajustes de corrección de la temperatura

Parámetro	Unidades	Predeterminado	Rango
Punto de ajuste de temperatura	°C	20	0–100°C
Coeficiente de temperatura	US/°C	0	-9,9999–9,9999

Los ajustes de corrección de la temperatura están pensados para permitir a los diseñadores del sistema compensar los efectos de un clima cálido o frío en las reacciones del hormigón mediante el cambio de la humedad final en función de la temperatura. Para ello, los ajustes permiten cambiar el Valor final mediante el **Coeficiente de temperatura** en proporción a la diferencia de la temperatura actual desde el **Punto de ajuste de temperatura**. La ecuación es la siguiente:

Nuevo Final = *Viejo Final* + *Coeficiente de temperatura* * (*Punto de ajuste de temperatura – Temperatura actual*)

Ajustes de modo automático

Parámetro	Unidades	Predeterminado	Rango
Control automático local	Ninguna	No	Sí/No
Ganancia proporcional	Ninguna	5	-100–100
Ganancia integrada	Ninguna	0	-100–100
Ganancia derivada	Ninguna	0	-100–100

El parámetro **Control automático local** define la fórmula para que utilice los valores de fórmula local para el circuito del modo AUTO en vez de los parámetros introducidos en la sección Parámetros del sistema.

Los parámetros **Ganancia proporcional, Ganancia integrada** y **Ganancia derivada** controlan las válvulas de agua durante el modo AUTO. Comparan el valor de sensor actual con el valor final y generan una señal de control para la velocidad de incorporación de agua (durante el proceso, la velocidad de incorporación de agua se controla inicialmente abriendo las válvulas fina y gruesa completamente y, a medida que se reduce el error, cerrando la válvula gruesa y variando la velocidad de impulso de la válvula fina). La optimización de estos parámetros se describe en la Guía del operador, capítulo 'Uso del control de humedad.

Capítulo 5

1 Válvulas de agua

1.1 Introducción

A pesar de que el Hydro-Control puede funcionar con una única válvula de control de agua, sólo es posible alcanzar un rendimiento óptimo mediante:

- Una válvula gruesa para acercar con rapidez el nivel de humedad al valor final
- Una válvula fina para ajustar el nivel de humedad al valor final sin superarlo

Es fundamental que las válvulas tengan el tamaño correcto y que se hayan ajustado bien las velocidades de flujo con respecto a la eficacia y la capacidad de la mezcladora.

Esta es una configuración de ejemplo, consulte las directrices del fabricante para obtener detalles específicos.

Figura 38: Configuración habitual de la válvula de agua

1.2 Instrucciones para ajustar el tamaño de las válvulas y las velocidades de flujo

Las válvulas deben poder activarse y desactivarse con rapidez; la duración del ciclo combinado de activación/desactivación para una válvula de 50 mm (2") no debería ser más de 2 segundos y, para válvulas de 19 mm (3/4"), la duración del ciclo combinado de activación/desactivación debería ser como máximo de 1 segundo. Estas duraciones permiten una incorporación de agua precisa.

- La velocidad de flujo de la válvula fina multiplicada por la duración del ciclo de activación/desactivación debería estar en el rango de 0,04% a 0,1% de aumento de humedad (p. ej., para una mezcladora de 1 m³ {35 ft³}, la velocidad de flujo x la duración de activación/desactivación debería estar en el rango de 1 a 2,4 l {0,26 a 0,63 Gal})
- La velocidad de flujo de la válvula gruesa multiplicada por la duración del ciclo de activación/desactivación debería estar en el rango de 0,25% a 0,5% de aumento de humedad (p. ej., para una mezcladora de 1 m³ {35 ft³}, la velocidad de flujo x la duración de activación/desactivación debería estar en el rango de 6 a 12 l {1,6 a 3,2 Gal})
- En caso de duda respecto a la duración de activación/desactivación de la válvula, defínala en un segundo y, a continuación, elija tamaños de válvula que proporcionen una velocidad de flujo adecuada de acuerdo con el cuadro siguiente:

En las dos tablas siguientes se muestran las velocidades de flujo recomendadas para distintos tamaños de mezcladora.

Capacidad de la	Carga (Kg)	Válvula gruesa		Válvula fina			
mezcladora (m³)		Velocidad de flujo (l/s)	Duración de activación/ desactivación (s)	% de aumento de humedad	Velocidad de flujo (l/s)	Duración de activación/ desactivación (s)	% de aumento de humedad
0,25	550	2	1	0,36	0,4	1	0,07
0,5	1100	4	1	0,36	0,75	1	0,07
1,0	2200	8	1	0,36	1,5	1	0,07
1,5	3300	12	1	0,36	2,25	1	0,07
2,0	4400	15	1	0,34	3	1	0,07

Capacidad de la	Carga (Ibs)	Válvula gruesa			Válvula fina		
mezcladora (ft³)	、	Velocidad de flujo (Gal/s)	Duración de activación/ desactivación (s)	% de aumento de humedad	Velocidad de flujo (Gal/s)	Duración de activación/ desactivación (s)	% de aumento de humedad
10	1400	0,6	1	0,36	0,1	1	0,06
20	2800	1,2	1	0,36	0,25	1	0,07
40	5500	2,4	1	0,36	0,5	1	0,07
60	8300	3,6	1	0,36	0,75	1	0,07
80	11.000	4,5	1	0,34	0,9	1	0,07

Esta tabla muestra un ejemplo de diámetros de tubería

Índice de flujo (l/s)	Diámetro de tubería (mm)	Diámetro de tubería (pulg.)
0.5	20	3⁄4
	25	1
□2	40	1 1⁄2

1.3 Ejemplo

Unidades métricas:

Si una mezcladora de 1 m³ sólo tiene una válvula gruesa y la velocidad de flujo de agua a través de la válvula es de 10 l/s con una duración del ciclo de activación/desactivación de 1 s, el agua sólo se puede añadir en pasos de 10 l. Con una carga completa (~ 2200 Kg), el paso de humedad más pequeño es de aprox. 0,5%, un valor demasiado grueso para obtener un control adecuado.

Si el mismo sistema también incluyera una válvula fina con una velocidad de flujo de 1 l/s y una duración de activación/desactivación de 1 s, el uso de esta válvula permitiría la incorporación de agua en pasos de aprox. 1 l o 0,05%, lo que proporcionaría un control adecuado.

Unidades imperiales:

Si una mezcladora de 35 ft³ sólo tiene una válvula gruesa y la velocidad de flujo de agua a través de la válvula es de 3 Gal/s con una duración del ciclo de activación/desactivación de 1 s, el agua sólo se puede añadir en pasos de 3 Gal. Con una carga completa (~ 4800 lbs), el paso de humedad más pequeño es de aprox. 0,5%, un valor demasiado grueso para obtener un control adecuado.

Si el mismo sistema también incluyera una válvula fina con una velocidad de flujo de 0,3 Gal/s y una duración de activación/desactivación de 1 s, el uso de esta válvula permitiría la incorporación de agua en pasos de aprox. 0,3 Gal o 0,05%, lo que proporcionaría un control adecuado.

Tenga en cuenta que una velocidad de flujo de agua más alta normalmente permitirá una duración del ciclo de mezclado más corta en una mezcladora eficaz, siempre que la válvula sea suficientemente rápida para controlar la dosis (la duración de activación/desactivación es breve). Una velocidad de flujo lenta y una válvula lenta proporcionarán la misma precisión en la dosis pero tardarán más en completar una mezcla.

También es posible añadir agua demasiado rápido a una mezcladora, lo que crea una bola de agua grande que se desplaza por la mezcladora con las materias primas en lugar de mezclarse. Para compensarlo, se recomienda añadir agua con un sistema de barras de rociado en lugar de a partir de una salida única.

1.4 Alarma de fuga en la válvula de agua

Si las salidas del flujo del contador de agua envían impulsos cuando no hay ninguna válvula abierta, se activará la Alarma de fuga en la válvula de agua.

2 Medición de flujo

2.1 Medidor de flujo

El medidor de flujo se debe configurar para que proporcione una velocidad de impulso de entre 1 y 10 Hz. Para un sistema que añade 60 litros en una dosis de 30 segundos, significaría 2 litros por segundo, así que un medidor de flujo que proporcione 2 impulsos por litro resultaría adecuado (enviaría impulsos 4 veces por segundo).

2.2 Agua pesada

En el modo Agua pesada, se llena un tanque hasta un nivel conocido (el punto de nivel alto) y se deja preparado para la fase de incorporación de agua. Se utiliza una entrada analógica de una unidad de peso y la lectura se pone a cero cuando el tanque alcanza el punto de nivel alto. A medida que el tanque vacía el peso del agua que se ha dosificado hacia el interior del sistema, se puede leer a partir del cambio en la entrada, lo que se puede utilizar para determinar la cantidad de agua dosificada.

2.3 Modo Cronometrado

En el modo Cronometrado, el agua se añade durante un periodo especificado en la fórmula. La presión del agua debe ser constante para que los resultados en este modo se puedan repetir. No se recomienda diseñar un sistema para que utilice este modo, pero puede resultar útil para mantener una planta en funcionamiento cuando se produce un problema con un medidor de flujo.

3 Sistemas de reacondicionamiento

El Hydro-Control se puede reacondicionar con facilidad para cualquier sistema de control de planta con el fin de permitir una actualización sencilla para habilitar la incorporación de agua con control de humedad.

Figura 39: Diagrama de bloques del sistema

3.1 Conexiones básicas

En la Figura 38 se muestra el diagrama de bloques de un sistema. A pesar de que la configuración más sencilla sólo requiere la conexión de una válvula fina, se recomienda utilizar también un modo de medir la cantidad de agua dosificada en la mezcladora, ya sea utilizando un medidor de flujo o empleando un sistema de agua pesada. En la Figura 39 se muestra una instalación sencilla, que permite controlar una o dos válvulas y leer un contador de agua.

En instalaciones en las que el Hydro-Control está integrado en el sistema de control de lotes, las señales más importantes que entran y salen del controlador de lotes son la señal de inicio/reanudación (para indicar al Hydro-Control que el mezclador está preparado para que se añada agua), la señal de mezcla completa (que indica al sistema de control de lotes que el Hydro-Control ha acabado de añadir agua) y la señal de restablecimiento (que se utiliza para volver a ajustar el Hydro-Control en modo de espera). Se deben usar otras señales según sea necesario.

Debe dejarse que transcurran como mínimo 10 segundos tras enviar la señal de restablecimiento antes de enviar una señal de inicio para iniciar la extracción del lote.

Figura 40: Ejemplo de esquema de cableado para funcionamiento manual de planta

3.2 Selección de fórmula remota

Si cambia el diseño de la fórmula en la mezcladora (por ejemplo, si se utiliza una mezcla de áridos distinta, un tipo de cemento diferente, un aditivo diferente o bien un color o pigmento distinto), se recomienda encarecidamente que utilice distintas fórmulas en el Hydro-Control para la calibración y el control. En un sistema que está integrado en un sistema de control de lotes, es mejor realizar la selección automática de la fórmula.

La selección automática de la fórmula se puede implementar utilizando una conexión RS232 entre el sistema de lotes y el Hydro-Control o empleando las señales de selección de fórmula que están disponibles si el sistema incluye la Tarjeta de expansión.

La Tarjeta de expansión dispone de 9 conexiones (8 conexiones de entrada con una masa común) y acepta señales en los formatos siguientes:

- Binario (máximo de 255 fórmulas)
- Decimal codificado binario (BCD) (máximo de 99 fórmulas)
- Discontinuo (máximo de 8 fórmulas)

3.3 Actualización de instalaciones del Hydro-Control V

El Hydro-Control VI se ha diseñado para poder sustituir directamente a un Hydro-Control V. Los conectores del E/S aceptarán los mismos conectores que utiliza el Hydro-Control V, con la misma salida de terminal. Se debe actuar con atención para insertar los conectores correctamente de modo que los disyuntores de las llaves de los conectores coincidan con los propios conectores.

El Hydro-Control VI Utility es una herramienta de software complementaria que se ejecuta en un PC y que se puede utilizar para convertir una copia de seguridad de un sistema Hydro-Control V, lo que permite copiar las fórmulas y los parámetros del sistema en un Hydro-Control VI.

Se deben tener en cuenta los puntos siguientes:

El nombre de la señal de ocupado en el Hydro-Control V ha pasado a llamarse Admix. Las funciones son las mismas que en el Hydro-Control V, excepto por la incorporación de '% de admix habilitado'.

Ya no se admite la ganancia de fórmula para el modo AUTO. Los parámetros PID deben definirse con prudencia para compensar los lotes más pequeños en los que la humedad aumentará más rápido. También se puede utilizar una fórmula independiente con los parámetros PID locales si se necesitan tiempos de lote más rápidos.

Ya no existe un modo de calibración, ya que la calibración se puede realizar más fácilmente utilizando un lote reciente en el Registro de mezcla como una "plantilla" para configurar los puntos de calibración y el valor final de la fórmula.

Será necesario poner en marcha los parámetros de circuito de control de agua del modo AUTO. Esto se debe a que la configuración del circuito de control del modo AUTO se ha simplificado, lo que facilita en gran medida el ajuste correcto para obtener un rendimiento más eficaz. Como punto inicial para actualizar un sistema, divida el parámetro Ganancia proporcional utilizado en el Hydro-Control V entre 10 y establezca los parámetros Ganancia integrada y Ganancia derivada como cero.

4 Diseño del ciclo de mezclado

En esta sección se detalla el diseño de la secuencia de control de mezclado que puede contener un máximo de tres pasos de incorporación de agua junto con las duraciones de mezclado asociadas.

El diseño de la secuencia de mezclado se suele basar en el tipo de hormigón que se esté fabricando, el tipo de áridos o las recomendaciones de incorporación de aditivos.

4.1 Ciclo de mezclado completo

En la Figura 41 se muestra una mezcla completa que utiliza todas las opciones básicas del ciclo de mezclado.

La mezcladora se carga y, a continuación, se envía la señal de inicio al Hydro-Control. A continuación, Hydro-Control inicia el ciclo de mezcla inicial y añade una cantidad opcional de agua de prehumedecimiento que se puede utilizar para aumentar la humedad de los materiales secos. El agua de prehumedecimiento resulta útil si se utilizan materiales ligeros o materiales con valores de absorción de agua altos. Se considera que la mejor práctica consiste en aumentar la humedad de las materias primas por encima de su condición de Superficie saturada seca (SSD) siempre que sea posible antes de que los materiales pasen a la mezcladora. El uso del agua de prehumedecimiento también puede reducir la cantidad de mezcladora.

El Hydro-Control señala al sistema de control de lotes que se ha completado el prehumedecimiento. A continuación, el sistema de control añade el cemento y activa la señal 'Entrada de cemento'.

El Hydro-Control ejecuta la duración de la mezcla seca, añade el agua principal y ejecuta la duración de la mezcla húmeda antes de activar la salida 'Mezcla completa'. Entonces, el sistema de control de lotes puede descargar la mezcladora y enviar una señal de restablecimiento al Hydro-Control para prepararse para el siguiente lote.

Figura 42: Ciclo de mezcla completa

4.2 Mezcla sencilla

Una secuencia de control de mezclado más sencilla consiste en cargar todas las materias primas en la mezcladora al mismo tiempo y, a continuación, llevar a cabo una mezcla seca para homogeneizar los materiales. Después se añade el agua principal y se ejecuta el tiempo de la mezcla húmeda antes de proporcionar la salida 'Mezcla completa' para indicar que el sistema de control puede vaciar la mezcladora. Esta cuestión se muestra en la Figura 42 con el estado de E/S.

Figura 43: Ciclo de mezclado que muestra el estado de E/S

La señal 'Entrada de cemento' es opcional y se puede utilizar para controlar la sincronización de la incorporación de cemento. El requisito de la señal se puede configurar en la base de datos de fórmulas estableciendo el parámetro 'Tiempo de espera de cemento' en un valor distinto de cero. A continuación, el sistema esperará hasta que se haya recibido la señal 'Entrada de cemento' antes de iniciar la fase Mezcla seca.

Cuando el sistema recibe la señal de inicio, se inicia un temporizador y, si este alcanza el valor de 'Tiempo de espera de cemento' antes de que se haya recibido la señal 'Entrada de cemento', se activará la 'Alarma de entrada de cemento' a menos que se haya deshabilitado en la página Parámetros del sistema.

4.3 Control de admix

El efecto que tiene un aditivo en la señal del sensor dependerá del propio aditivo y del momento en el que se añada a la mezcladora. El Hydro-Control dispone de una salida para controlar la incorporación del aditivo, que se puede configurar utilizando el parámetro Señal de admix en la segunda página de los Parámetros del sistema.

Figura 44: Señal de salida de admix durante un ciclo de mezclado normal

Cuando el parámetro Señal de admix se ha establecido como '% de admix habilitado', la salida de admix se establece como un valor alto durante la incorporación de Agua principal cuando el porcentaje del agua principal dosificada alcanza el parámetro de fórmula 'Admix habilitado'. El agua total utilizada para calcular el porcentaje es la cantidad calculada (en modo CALC) o la cantidad dosificada en el lote anterior (en modo AUTO).

Se utiliza para retrasar la incorporación de aditivos hasta que se haya dosificado una cantidad de agua establecida. Puede tratarse de un requisito indicado por el fabricante del aditivo.

Cuando el parámetro Señal de admix se establece como 'Agua', la salida de admix se establece como un valor alto siempre que se esté añadiendo agua a la mezcladora.

Cuando el parámetro Señal de admix se establece como 'Admix', la salida de admix se establece como un valor alto durante las fases de incorporación de agua principal del ciclo de mezclado. Esto permite proporcionar compatibilidad para productos anteriores con el Hydro-Control V.

Cuando la señal de admix se establece como 'Todo', la salida de admix se establece como un valor alto desde el momento en el que el Hydro-Control recibe la señal de inicio hasta el momento en el que el Hydro-Control genera la señal Mezcla completa. Esto equivale a la salida ocupada en el Hydro-Control V.

Figura 45: Señal de salida de admix durante un ciclo de mezclado de 2 pasos

Si la fórmula se configura en el modo de incorporación de 2 pasos, cuando se añade la incorporación de agua principal utilizando el modo Preajuste, el ciclo de mezclado añadirá el Agua principal a la mezcladora en dos partes, definidas por el parámetro Admix habilitado en la fórmula. Después de la Incorporación de agua principal 1, la fase Mezcla seca se ejecutará una segunda vez.

Al final de cada una de las fases de Mezcla seca, el sistema obtendrá una lectura promedio del valor del sensor tal como se ha definido en el parámetro 'Tiempo promediado' de los Parámetros del sistema.

Si se utiliza este lote de 2 pasos para calibrar una fórmula, se calcularán una segunda ganancia y un valor de desviación para la fórmula y dichos valores se utilizarán para calcular la humedad siempre que el valor sin escala aumente por encima del valor sin escala promedio a partir de la segunda fase Mezcla seca. Esto sucederá en los modos AUTO o CALC.

Esta función resulta útil si se está utilizando un aditivo que provoca un cambio importante en la calibración del material en la mezcladora. El modo de incorporación de 2 pasos cambiará la escala de la visualización de humedad en el gráfico de la pantalla principal de modo que ofrezca una información más representativa de la humedad en la mezcladora.

4.4 Seguimiento automático

El Seguimiento automático se puede utilizar durante las fases de mezcla del ciclo de mezcla para ajustar de forma automática el tiempo de mezcla en función de la homogeneidad del material de la mezcladora. En la página Parámetros del sistema, existen cuatro conjuntos de parámetros que permiten controlar el momento en el que el Seguimiento automático finalizará las fases de mezcla. Estos valores se pueden anular en los Parámetros de fórmula en caso necesario. En los Parámetros de fórmula se pueden seleccionar las fases que utilizarán el Seguimiento automático.

Figura 46: Señal de mezcla que muestra ajustes de Seguimiento automático

En la Figura 45 se muestra una señal de mezcla típica en la que aparece la sincronización de Seguimiento automático. El Seguimiento automático supervisa la humedad e identifica el punto estable para los tiempos de Mezcla seca y Mezcla húmeda. Requiere que la variación del valor del sensor sea menor que el parámetro de desviación de mezcla para el periodo del parámetro de tiempo de mezcla antes de continuar con la siguiente fase de mezclado. Si el tiempo alcanza el parámetro de tiempo de mezcla de la fórmula, se activa una alarma.

En la pantalla de descripción general, el tiempo de mezcla aparecerá dos veces junto al tiempo definido en la fórmula. El proceso Seguimiento automático es el siguiente:

- Mezcla hasta que el tiempo de la fase de mezcla sea inferior al tiempo de mezcla menos el tiempo de Seguimiento automático
- Grabación del valor del sensor e inicio del Seguimiento automático. Aparecerán dos líneas verdes en el gráfico que indicarán la tolerancia máxima y mínima del Seguimiento automático
- Si el valor del sensor está fuera de la desviación de Seguimiento automático del valor +/- registrado, reinicie el Seguimiento automático
- Si la lectura del sensor permanece dentro de los límites del tiempo de Seguimiento automático, salga de la fase de mezcla
- Si el sistema continúa en la fase de mezcla durante el tiempo de mezcla introducido en la fórmula dos veces, se emite una alarma que permite al usuario seleccionar si desea repetir la fase (el tiempo de mezcla se dobla automáticamente en la fórmula) o salir de la fase de mezcla y continuar con el resto del ciclo

4.4.1 Seguimiento automático con modo Preajuste

El Seguimiento automático se puede utilizar con el modo Preajuste para garantizar que la lectura del sensor sea estable el final de las mezclas seca y húmeda. Cuando el sistema se ejecuta con Seguimiento automático, el promedio tomado al final de cada una de las fases de mezclado es el valor promediado durante el tiempo de Seguimiento automático y no el definido por el valor Tiempo promediado en los Parámetros del sistema. Con esto se garantiza que cualquier valor empleado para la calibración represente el valor del sensor en la mezcladora.

4.4.2 Seguimiento automático con modo CALC

Cuando el Seguimiento automático se utiliza con el modo CALC, los parámetros de Seguimiento automático deberían establecerse de modo que la Desviación de mezcla seca ofrezca una lectura estable (por ejemplo, 0,1%) para el cálculo tal como se describe en la sección anterior. La Desviación de mezcla húmeda debería establecerse de modo que dependa de la calidad del hormigón necesario.

4.4.3 Seguimiento automático con modo AUTO

El Seguimiento automático se puede utilizar con el modo AUTO en la mezcla seca para obtener un grado de homogeneidad a partir del cual poder iniciar la incorporación de agua. Esta función puede resultar útil si la humedad de las materias primas a veces varía, lo que provoca diferencias en la acción de mezclado inicial (por ejemplo, si el cemento tarda más en homogeneizarse debido a áridos más húmedos). Durante la mezcla húmeda el Seguimiento automático se puede utilizar para controlar la homogeneidad final de la mezcla.

Capítulo 6

1 Ajustes del puerto

1.1 RS232

Los ajustes del puerto RS232 deberían configurarse de la siguiente forma:

- Velocidad de transmisión: 9600
- Bits de datos: 8
- Paridad: Ninguna
- Bits de parada: 1
- Intercambio de protocolos: Ninguno

1.2 Ethernet

El puerto Ethernet también se puede configurar para utilizar el protocolo RS232. La dirección IP requerida se muestra en la sección Comunicaciones remotas y el dispositivo conectado debe definirse para comunicar en el puerto 23. Si se conecta a un Hydro-Control fuera de la red local, consulte al administrador de red para configurar el reenvío de puertos.

2 Configuración del protocolo RS232

El parámetro **Protocolo RS232** define si el protocolo de comunicaciones en serie utilizado en Hydro-Control debe definirse en el modo Hydro-Control VI o en los modos Hydro-Control V o Hydro-Control IV anteriores. Si Hydro-Control VI sustituye un Hydro-Control V o Hydro-Control IV y se están utilizando las comunicaciones remotas, este parámetro debe definirse en HC05 o HC04 respectivamente. HC06 v1 se puede seleccionar en los sistemas diseñados para utilizar el formato de registro de mezcla HC06 v1. HC06 v2 se puede utilizar en los sistemas diseñados para utilizar el formato de registro de mezcla HC06 v2.

Comunicaciones				
Config. puerto RS232 Estado puerto: Velocid. transm.: Bits de datos:	Cerrado 9.600 8	Bits parada: Paridad: Reconocim. mutuo:	1 Ninguno Ninguno	
Protocolo RS232:	HC06 v1	~		
Config. puerto RS232	2			
Guardar	Cle	ear Si	guiente	Menú
campios	Con	nms		

Figura 48: Pantalla Comunicaciones remotas de RS232

Con esta pantalla se pueden visualizar los comandos RS232 recibidos por la unidad y las respuestas enviadas desde la unidad. Si se ha enviado una gran cantidad de datos, como por ejemplo el registro de mezcla completo, puede que la actualización de esta pantalla con todos los datos enviados tarde algún tiempo.

3 Comandos RS232, formatos HC05/HC06

Todos los comandos deben terminar con un carácter ASCII 13 (retorno de carro). Una vez recibido, el Hydro-Control intentará procesar el comando. Las menciones de comandos se enumeran a continuación. Cada uno de ellos terminará con un carácter ASCII 13.

Código	Significado
Algún valor	Se devuelven los datos solicitados a través de un comando de lectura válido
!	Se ha completado con éxito una operación de escritura de datos
?10	Comando no válido
?11	Parámetro 1 fuera del intervalo
?12	Parámetro 2 fuera del intervalo
?13	Parámetro 3 fuera del intervalo
?14	Comando no válido en esta fase de mezcla

Para evitar cambios accidentales (como el cambio de la fórmula durante la mezcla), algunos comandos no son válidos durante determinadas fases de la mezcla. Se informará de ello donde corresponda. En las subsecciones siguientes se describen los distintos tipos de comandos que se pueden utilizar.

3.1 Comandos de estado/distintos de parámetro

Se trata de comandos que no se corresponden con el estado actual del Hydro-Control ni de ningún parámetro de fórmula o sistema. Estos comandos se enumeran a continuación.

Formato	Descripción	Rango de parámetros	Periodo válido	Respuesta
>R1=nn	Selecciona la fórmula nn como la próxima fórmula	n como nn = cualquier número entero		!
	Si no existe en la base de datos la receta solicitada, se creará una nueva receta vacía con el número de receta seleccionado	válido		
>D1 = nn	Establece el peso en seco en kg/lbs de la fórmula actual como nn	Nn = 1–32000	En espera	!
*2	Valor de humedad actual	N/A	Cualquiera	хх.уу
*3	Versión de software	N/A	Cualquiera	Hydro-Control VI v x.x.x.x
*4	Descarga de registro de mezcla	N/A	Cualquiera	Todos los registros de mezcla actuales

	completo			(valores separados por tabulaciones)
*5	Temperatura actual en °C o °F	N/A	Cualquiera	xx.y
*7	Lectura sin escala del sensor	N/A	Cualquiera	хх.уу
*8	Descarga del último lote del registro de mezcla	N/A	Cualquiera	Último registro de mezcla (valores separados por tabulaciones)
*9	Descarga del último lote del registro de mezcla (formato HC06 v2)	N/A	Cualquiera	Último lote del registro de mezcla (valores separados por tablas)
*10	Total de agua actual	N/A	Cualquiera	xx.y

3.2 Formatos de registro de mezcla

El formato de registro de mezcla dependerá del modo en que se haya establecido el Protocolo RS232. Este parámetro figura en la página 2 de la pantalla Parámetros del sistema y se pueden consultar detalles sobre el mismo en el Capítulo 4.

Los datos se envían como una lista de valores separados por el carácter de tabulación (Código ASCII 9).

3.2.1 Formato del Hydro-Control V (HC05)

Valor	Descripción
1	Método de control/fórmula/lote
2	Humedad, % en seco
3	Humedad, % de valor final calculado
4	Humedad, % en húmedo
5	La proporción de agua/cemento
6	Agua de prehumedecimiento
7	Agua calculada
8	Agua real
9	Agua de ajuste
10	Tiempo de mezcla
11	Peso en seco
12	Ganancia de humedad
13	Desviación de humedad
14	Lectura en seco sin escala
15	Valor final calculado sin escala
16	Valor final sin escala
17	Desviación en seco sin escala
18	Desviación en húmedo sin escala
19	Humedad, % de desviación en seco
20	Humedad, % de desviación en húmedo
3.2.2 Formato del Hydro-Control VI (HC06)

Valor	Descripción	
1	Método de control/fórmula/lote	
2	Humedad, % en seco	
3	Lectura en seco sin escala	
4	Humedad, % de desviación en seco	
5	Desviación en seco sin escala	
6	Humedad, % de valor final calculado	
7	Valor final calculado sin escala	
8	Humedad, % en húmedo	
9	Lectura en húmedo sin escala	
10	Humedad, % de desviación en húmedo	
11	Desviación en húmedo sin escala	
12	Agua de prehumedecimiento	
13	Agua calculada	
14	Ajuste automático	
15	Ajuste manual	
16	Error de adición	
17	Total de agua	
18	Proporción agua/cemento	
19	Tiempo de mezcla seca	
20	Tiempo de incorporación de agua	
21	Tiempo de mezcla húmeda	
22	Tiempo total	
23	Peso en seco	
24	Peso de cemento	

25	Ganancia de humedad 1
26	Desviación de humedad 1
27	Ganancia de humedad 2
28	Desviación de humedad 2
29	Ganancia de cálculo
30	Desviación de cálculo
31	Ganancia proporcional
32	Ganancia derivada
33	Error de entrada de cemento
34	Error del contador de agua
35	Fuga en válvula de agua
36	Error de no se requiere agua
37	Error de demasiada agua calculada
38	Valor final de prehumedecimiento no alcanzado
39	Mezcla demasiado húmeda rechazada
40	Mezcla demasiado seca rechazada
41	Mezcla demasiado húmeda aceptada
42	Mezcla demasiado seca aceptada
43	Límite de agua superado
44	Tiempo máx. de mezcla seca alcanzado
45	Tiempo máx. de mezcla húmeda alcanzado
46	Mezcla cancelada
47	Error del sensor
48	Palas del mezclador deterioradas

3.2.3 Formato del Hydro-Control VI (HC06) v2

Valor	Descripción
1	Lote/fórmula/Método de control prehúmedo/Método de control
2	Activación inicial de Seguimiento automático
3	Activación prehúmeda de Seguimiento automático
4	Activación seca de Seguimiento automático
5	Activación de humedad de Seguimiento automático
6	Valor de mezcla inicial (% de humedad)
7	Valor de mezcla inicial (sin escalar)
8	Desviación de mezcla inicial (% de humedad)
9	Desviación de mezcla inicial (sin escalar)
10	Valor final de prehumedad (% de humedad)
11	Valor final de prehumedad (sin escalar)
12	Valor de mezcla prehúmeda (% de humedad)
13	Valor de mezcla prehúmeda (sin escalar)
14	Desviación de mezcla prehúmeda (% de humedad)
15	Desviación de mezcla prehúmeda (sin escalar)
16	Valor de mezcla seca (% de humedad)
17	Valor de mezcla seca (sin escalar)
18	Desviación de mezcla seca (% de humedad)
19	Desviación de mezcla seca (sin escalar)
20	Valor final (% de humedad)
21	Valor final (sin escalar)
22	Valor de mezcla húmeda (% de humedad)
23	Valor de mezcla húmeda (sin escalar)
24	Desviación de mezcla húmeda (% de humedad)

25	Desviación de mezcla húmeda (sin escalar)
26	Agua de prehumedecimiento
27	Agua calculada
28	Agua de ajuste automático
29	Agua de ajuste manual
30	Error de adición
31	Total de agua
32	Proporción agua/cemento
33	Tiempo de mezcla seca
34	Tiempo de incorporación de agua
35	Tiempo de mezcla húmeda
36	Tiempo total
37	Peso en seco
38	Peso en cemento
39	Temperatura de mezcla
40	Ganancia de humedad prehúmeda
41	Desviación de humedad prehúmeda
42	Ganancia de humedad 1
43	Desviación de humedad 1
44	Ganancia de humedad 2
45	Desviación de humedad 2
46	Ganancia de cálculo
47	Desviación de cálculo
48	Ganancia proporcional
49	Ganancia integral
50	Ganancia derivada

51	Error de entrada de cemento
52	Error del contador de agua
53	Fuga en válvula de agua
54	Error de no se requiere agua
55	Error de demasiada agua calculada
56	Valor final de prehumedecimiento no alcanzado
57	Mezcla demasiado húmeda rechazada
58	Mezcla demasiado seca rechazada
59	Mezcla demasiado húmeda aceptada
60	Mezcla demasiado seca aceptada
61	Límite de agua superado
62	Tiempo máx. de mezcla seca alcanzado
63	Tiempo máx. de mezcla húmeda alcanzado
64	Mezcla cancelada
65	Error del sensor
66	Palas del mezclador deterioradas

3.3 Parámetros de fórmula de lectura y escritura

Los valores de fórmula de cada fórmula se pueden establecer en cualquier momento excepto si la fórmula se está utilizando en ese momento. Si la fórmula se está utilizando, los comandos para cambiar parámetros se aplicarán en la siguiente mezcla iniciada.

Para leer parámetros, se debe utilizar el formato siguiente:

• #_R_nn_pp

"_" denota un espacio, no utilice el carácter de subrayado en la cadena de RS232, "nn" denota el número de fórmula y "pp" denota el parámetro que se va a leer.

Para escribir un parámetro de fórmula, se debe utilizar el formato siguiente:

• #_W_nn_pp_vv

"_" denota un espacio, no utilice el carácter de subrayado en la cadena de RS232, "nn" denota el número de fórmula, "pp" denota el parámetro que se va a cambiar y "vv" es el valor con el que se va a establecer.

A continuación se presenta una lista de parámetros y sus unidades correspondientes. Algunos comandos se han cambiado o ya no se utilizan. Esta información se presenta para la compatibilidad con productos anteriores. A partir del comando 40 en adelante, se trata de nuevos comandos para el HC06.

Parámetro	Descripción	Unidades	Valor de RS232	Valor real
4	Tiempo mezcla inicial	Segundos	10	10
5	Tiempo de espera de cemento	Segundos	10	10
6	Agua de prehumedecimiento	Segundos, Litros, Galones US, Peso	250	25,0
7	Valor final de humedad	%	65	6,5
8	Total de agua de preajuste (anteriormente Final de preajuste)	Segundos, Litros, Galones US, Peso	300	30,0
9	Límite de agua de prehumedecimiento	Segundos, Litros, Galones US, Peso	1200	120,0
13	Duración del mezclado final	Segundos	15	15
14	Tolerancia positiva	%	10	1,0
15	Tolerancia negativa	%	3	0,30
17	YA NO SE UTILIZA (era ganancia de fórmula)	N/A	N/A	N/A
19	Desviación de humedad	Ninguna	-36364	-3,6364
20	Ganancia de humedad	Ninguna	1817	0,1817
23	Método de control (0 = preajuste, 1 = auto, 2 = calc)	Ninguna	N/A	N/A
24	Peso en seco	Kg o lbs	2000	2000
25	YA NO SE UTILIZA (era % de cálculo)	N/A	N/A	N/A
26	YA NO SE UTILIZA (era agua de calibración)	N/A	N/A	N/A
27	Límite de agua	Segundos, Peso, Litros o Galones US	500	50,0
28	Ajuste de agua	Segundos, Peso, Litros o Galones US	50	5,0
29	Contador de lotes	Ninguna	3	3

30	Mezcla de prehumedecimiento (era Retraso de prehumedecimiento)	Segundos	10	10
31	Valor final de prehumedecimiento	%	40	4,0
32	Modo de prehumedecimiento (0 = auto, 1 = preajuste)	Ninguna	N/A	N/A
33	Peso de cemento	Kg o lbs	2000	2000
34	Temperatura	°C o °F	250	25,0
35	Coef. temp.	% /°temp.	200	0,2
36	Tipo de calibración (1 =1 punto, 2 = 2 puntos)	Ninguna	N/A	N/A
41	Admix habilitado después de % de agua	%	10	1,0
42	Cantidad de admix	Galones US, Litros	10	10
43	Extensión de mezcla habilitada (1 = verdadero, 0 = falso)	N/A	N/A	N/A
44	Tiempo de extensión de mezcla	Segundos	10	10
45	Seguimiento automático local habilitado (1 = verdadero, 0 = falso)	N/A	N/A	N/A
46	Mezcla seca de tiempo de seguimiento automático local	Segundos	10	10
47	Desviación de mezcla seca de seguimiento automático local	%	1	0,1
48	Mezcla húmeda de tiempo de seguimiento automático local	Segundos	10	10
49	Desviación de mezcla húmeda de seguimiento automático local	%	1	0,1
50	Habilitación de circuito automático local (1= verdadero, 0 = falso)	N/A	N/A	N/A
51	Ganancia proporcional de fórmula local	Ninguna	100	1,0
52	Ganancia derivada de fórmula local	Ninguna	100	1,0

53	Seguimiento automático habilitado (1= verdadero, 0 = falso)	N/A	N/A	N/A
54	Tiempo promediado	Segundos	10	10
55	Desviación de humedad 1	Ninguna	-36364	-3,6364
56	Ganancia de humedad 1	Ninguna	1817	0,1817
57	Desviación de humedad 2	Ninguna	-36364	-3,6364
58	Ganancia de humedad 2	Ninguna	1817	0,1817
59	Nombre de la fórmula	Ninguna	ABC	ABC
60	Descripción de la fórmula	Ninguna	ABC	ABC

3.4 Parámetros del sistema de lectura y escritura

Los valores del sistema de cada fórmula se pueden establecer en cualquier momento.

Para leer parámetros, se debe utilizar el formato siguiente:

• #_R_nn_pp

"_" denota un espacio, no utilice el carácter de subrayado en la cadena de RS232, "nn" siempre será 0 y "pp" denota el parámetro que se va a leer.

Para escribir un parámetro del sistema, se debe utilizar el formato siguiente:

• #_W_nn_pp_vv

"_" denota un espacio, no utilice el carácter de subrayado en la cadena de RS232, "nn" siempre será 0, "pp" denota el parámetro que se va a cambiar y "vv" es el valor con el que se va a establecer.

A continuación se presenta una lista de parámetros y sus unidades correspondientes. Algunos comandos se han cambiado o ya no se utilizan. Esta información se presenta para la compatibilidad con productos anteriores.

Parámetro	Descripción	Unidades	Valor de RS232	Valor real
101	Modo de agua (0 = medido, 2 = cronometrado,3 = pesado)	N/A	N/A	N/A
102	Flujo del medidor (opuesto al HC05)	Impulsos por litro	200	0,2
103	Tiempo de espera del medidor	Segundos	10	10
105	Idioma (0 = Inglés, otros pendientes de definir)	N/A	N/A	N/A
129	Suministro fino	Segundos, Peso, Litros o Galones US	20	20
130	En vuelo	Segundos, Peso, Litros o Galones US	10	1,0
131	Tiempo promediado	Segundos	150	15,0
132	Gruesa, en vuelo	Segundos, Peso, Litros o Galones US	10	1,0
139	Circuitos de ciclo	Ninguna	2	2
147	Tiempo de activación de válvula de agua	Segundos	100	1
148	Tiempo de desactivación de válvula de agua	Segundos	100	1

149	Usar solo válvula fina (1 = verdadero, 0 = falso)	N/A	N/A	N/A
151	Ganancia proporcional del sistema	Ninguna	100	1,0
152	Ganancia derivada del sistema	Ninguna	100	1,0
153	Tiempo de seguimiento automático de mezcla seca del sistema	Segundos	10	10
154	Desviación de seguimiento automático de mezcla seca del sistema	%	10	0,1
155	Tiempo de seguimiento automático de mezcla húmeda del sistema	Segundos	10	10
156	Desviación de seguimiento automático de mezcla húmeda del sistema	%	10	0,1

3.5 Comandos de estado de la mezcladora

Para obtener el estado del sistema, se puede proporcionar el comando siguiente:

• #_M_nn_pp

"_" denota un espacio, no utilice el carácter de subrayado en la cadena de RS232, "nn" siempre es 0 y pp es un parámetro tal como se describe a continuación.

Parámetro	Descripción	Unidades	Valor de RS232	Valor real
6	Fórmula activa actual	Ninguna	1	1
12	Total de última agua añadida	Segundos, Peso, Litros o Galones US	82,50	82,50
24	Tiempo empleado para alcanzar mezcla completa	Segundos	140	140
25	Byte de estado	(consulte a continuación)	N/A	N/A
26	Lectura de humedad en mezcla completa	%	7,40	7,40
27	Agua calculada (será 0 a menos que la fase de incorporación de agua principal esté en modo CALC)	Segundos, Peso, Litros o Galones US	10	1,0

En el caso del byte de estado devolverá los valores siguientes en función de en qué fase de la mezcla se encuentre.

- 1 En espera
- 2 Prehumedecimiento
- 4 En espera de cemento
- 8 Mezcla seca
- 16 Incorporación de agua principal
- 32 Mezcla húmeda
- 64 Mezcla completa
- 128 En pausa

También es posible obtener combinaciones de estado (como mezcla húmeda y pausa); en este caso se devolverían 32+128 = 160.

3.6 Comandos de control de la mezcladora

Para emitir comandos de inicio, pausa, reanudación y restablecimiento para la unidad, se utiliza el comando siguiente:

• >C1=nn

Donde nn corresponde al comando enviado.

- 01 iniciar
- 02 pausa
- 03 reanudar
- 04 restablecer
- 05 entrada de cemento

3.7 Estado de E/S

También es posible recuperar el estado actual de la E/S integrada. Para ello se puede utilizar el comando siguiente:

• >S1=n

n puede ser 0, 1 o 2. Si n = 0, se enviará una palabra de estado, donde:

- 1 Entrada de cemento
- 2 Iniciar/Reanudar
- 4 Pausa/Restablecer
- 8 Contador de agua
- 16 Tanque de agua lleno
- 32 Válvula gruesa
- 64 Válvula fina
- 128 Señal de prehumedecimiento terminado
- 256 Señal de mezcla completa
- 512 Señal de alarma
- 1024 Solicitar admix
- 2048 Salida no asignada

Si nn = 1, se enviará un byte de estado para las entradas de Tarjeta de expansión

- 0 Sin placa secundaria
- 1 Entrada digital 1
- 2 Entrada digital 2
- 4 Entrada digital 3
- 8 Entrada digital 4
- 16 Entrada digital 5
- 32 Entrada digital 6
- 64 Entrada digital 7
- 128 Entrada digital 8

Si nn = 2, se enviarán 4 números enteros delimitados por tabulaciones que representarán las lecturas actuales para las 2 entradas analógicas y las 2 salidas analógicas. Se enviarán 4 valores 0 delimitados por tabulaciones si no hay ninguna Tarjeta de expansión.

3.8 Estado de alarma

Se puede averiguar qué tipo de alarma hay activa actualmente; para ello, se debe enviar el comando siguiente:

• >A1

Este comando devolverá un valor entero basado en el tipo de alarma. A continuación se presenta una lista de valores enteros para las alarmas:

- 0 Sin alarma
- 1 Fallo de entrada de cemento
- 2 Fallo de contador de agua
- 3 Fuga en válvula de agua
- 4 No se requiere agua
- 5 Demasiada agua calculada
- 6 Valor final de prehumedecimiento no alcanzado (modo automático)
- 7 Mezcla demasiado húmeda
- 8 Mezcla demasiado seca
- 9 Límite de agua superado
- 10 Tiempo máximo de mezcla seca alcanzado
- 11 Tiempo máximo de mezcla húmeda alcanzado
- 12 Error del sensor
- 13 Palas del mezclador deterioradas
- 14 A la espera de llenado de tanque de agua
- 15 Por encima de temp.
- 16 Ventilador detenido

También es posible aceptar todas las alarmas. Se puede hacer utilizando el comando:

• >A2

4 Comandos RS232, formato HC04

En la segunda página de sistema, el modo RS232 puede establecerse en HC04. De este modo, la unidad podrá operar utilizando el protocolo de comunicaciones del Hydro-Control IV. Consulte HD044 para conocer una lista de los comandos utilizados. Esta funcionalidad es sólo para compatibilidad con productos anteriores y no conviene utilizarla en sistemas de reciente diseño.

Capítulo 7

El soporte remoto permite establecer una conexión remota con la unidad HC06 mediante una conexión Ethernet. Esta parte remota, a través de un PC estándar, puede ver, controlar y cambiar la configuración de la HC06 durante su funcionamiento, desde cualquier ubicación que disponga de conexión a Internet. Esta función permite a distribuidores, instaladores y gestores de sitio ofrecer asistencia a aquellos usuarios que puedan tener problemas para configurar o utilizar la HC06.

Para evitar las complicadas configuraciones de Ethernet, la función de soporte remoto utiliza un servidor de conexión situado en una ubicación externa. La HC06 sólo necesita una conexión básica de Ethernet para Internet, como la que se utiliza normalmente para navegar por Internet. Se establece una conexión con el servidor externo y la parte remota que se va a utilizar para controlar la HC06 también se conecta al mismo servidor mediante un sencillo paquete de software de cliente. A continuación se establece el control de la HC06.

El soporte remoto se puede configurar para utilizar el servidor de soporte de la Hydro-Control VI que suministra Hydronix o cualquier otro servidor que elija el instalador o distribuidor local para realizar su propia configuración.

Comunicaciones Ethernet.

Comunica	aciones Ethernet
Conexión a soporte remoto Número de serie: 51280 Servidor del soporte remoto hc06support.hydronix.com Número de teléfono del soporte remoto +44 (0)1483 468 900 Habilitar el puntero del ratón Desconect ar	Conexión remota Dirección IP
Guardar ajustes	Siguiente Menú

Figura 49: Página Comunicaciones Ethernet

1 Soporte remoto utilizando el servidor de soporte de la Hydronix Hydro-Control VI

De forma predeterminada, el servidor de soporte remoto apunta al servidor de soporte remoto de Hydronix. Se trata del servidor hc06support.hydronix.com. El instalador deberá cambiar el número de teléfono del soporte remoto por el número de teléfono de soporte correspondiente al cliente de la instalación.

A continuación, el equipo de soporte del cliente de la instalación deberá instalar el visor UltraVNC del software de cliente en los PC de soporte del cliente. Se encuentra disponible en la página web http://www.uvnc.com/download/index.html o se puede solicitar a Hydronix.

Ejecute el paquete de instalación seleccionado únicamente la instalación del visor. Ejecute el software.

Tenga en cuenta que este software sólo está disponible en determinados idiomas.

Ultr@VNC Viewer - Connection 1.0.8.2	×
VNC Server: 10:48003 (host:display or host::port)	
Quick Options AUTO (Auto select best settings) ULTRA (>2Mbit/s) - Experimental LAN (>1Mbit/s) - Max Colors MEDIUM (128 - 256Kbit/s) - 256 Colors MODEM (19 - 128Kbit/s) - 64 Colors SLOW (< 19kKbit/s) - 8 Colors	Connect Cancel
Use DSMPlugin MSRC4Plugin.dsm Proxy/Repeater hc06support.hydronix.com:5901	Config
Save connection settings as default Delete save	d settings

Figura 50: UltraVNC View software

Asegúrese de que la opción Proxy/Repeater esté seleccionada y de que la ubicación del repetidor esté establecida en hc06Support.hydronix.com:5901. De este modo, la conexión se establecerá con el servidor de soporte de la Hydronix Hydro-Control VI. La conexión será distinta para el servidor personalizado, y será necesario establecer la configuración del servidor personalizado.

Para conectarse a una unidad Hydro-Control VI de forma remota, escriba "ID:" en el campo VNC seguido del número de serie de la unidad HC06. Puede consultar este dato en la pantalla Comunicaciones Ethernet de la unidad Hydro-Control VI que se muestra en la Figura 49: Página Comunicaciones Ethernet.

Indique al usuario que conecte la unidad Hydro-Control VI al soporte remoto (consulte la Guía del usuario de HD0456 para obtener más información).

2 Soporte remoto utilizando un servidor personalizado

Para utilizar un servidor personalizado, primero es necesario configurar un servidor. El administrador de la red del servidor deberá conceder acceso mediante firewall para los puertos 5500 y 5901. Los puertos deberán reenviarse al servidor de soporte personalizado.

2.1 Configuración del repetidor UltraVNC en un servidor

El repetidor se encuentra disponible en la página web http://www.uvnc.com/download/index.html o se puede solicitar a Hydronix. Ejecute el software

del repetidor. El icono del repetidor aparecerá en la bandeja del sistema 🞽. Haga clic con el botón derecho del ratón en el icono del repetidor y seleccione los ajustes.

CHelpware Repeater Rel1	.0		X
5901 Listen port Viewer 5500 Listen Port Server		Enbale proxy(443) Enable Mode I Enable Mode I Enable Mode II	Enable Proxy: Viewer and server use the same port 443. This options is used by the https mode from server and viewer
Only Allow Connection to Serve	r 🗖		Enable dynamic service: This service use port 5912 (Fix). Using the dynamic service you can easy connect to a viewer with a dynamic ipaddress. The servce record the relationship between "dynalias name" and dynamic ip address.
Refuse connections to Server		_	Mode I: Only used by SC
			Mode II: Can be used by SC and PcHelpware.
	0		More Info http://www.uvnc.com/pchelpware/index.html
Restrict access to server port 0 = All ports 0 is wooded for Mode II	5900	<<<< 0 is NEEDED for	r mode II
U is needed for Mode II Only allow ID (nr;nr;nr)			
			🔽 Enable dynamic ip service
		>	CANCEL Save

Figura 51: Configuración del repetidor

Es más seguro desactivar las opciones "proxy(443)" y "Enable Mode II".

2.2 Configuración de la Hydro-Control VI y del PC de soporte para un servidor personalizado

El parámetro del servidor de soporte remoto de la Hydro-Control VI que se muestra en la página Comunicaciones Ethernet (consulte la Figura 49) debe establecerse con la dirección IP y número de puerto o nombre de dominio del servidor personalizado. El personal de soporte deberá instalar el visor UltraVNC y establecer la dirección del proxy/repetidor con la dirección IP y número de puerto o nombre del dominio del servidor personalizado en el que se va a instalar el repetidor.

3 Configurar el Hydro-Control para utilizar una dirección IP estática

El Hydro-Control se puede configurar para utilizar una dirección IP estática o automática (Figura 49). Para configurar la dirección IP estática, seleccione "Utilizar la siguiente dirección IP" e introduzca la dirección requerida. El servidor DNS también se puede definir manualmente.

Una vez configurado, seleccione 'Guardar configuración' para actualizar el Hydro-Control.

Para volver a una dirección IP automática, seleccione 'Obtener una dirección IP automáticamente' y guarde la configuración.

1 Tarjetas de datos y del sistema y tarjeta de memoria USB

El Hydro-Control incorpora una Tarjeta del sistema y una Tarjeta de datos. Se puede acceder a estas tarjetas a través de la placa de acceso superior. La identificación, extracción y sustitución de estas tarjetas se describe en el Capítulo 2.

1.1 Tarjeta del sistema (Número de pieza de sustitución 0176 de Hydronix)

La Tarjeta del sistema alberga los archivos de funcionamiento principales del Hydro-Control. La tarjeta es específica para cada tipo de unidad y no se debe cambiar entre unidades. (No aplicable al HC06 v2)

1.2 Tarjeta de datos (Número de pieza de sustitución 0177 de Hydronix)

La Tarjeta de datos contiene la base de datos de registro de mezclas y los ajustes del sistema. Con la alimentación eléctrica apagada, se puede extraer y sustituir en caso necesario. (No aplicable al HC06 v2)

1.3 Tarjeta de memoria USB

Figura 52: Vista lateral del Hydro-Control VI que muestra los puertos USB

Existen tres puertos USB ubicados en el lateral izquierdo con la orientación hacia la parte delantera de la unidad. Se puede utilizar una Tarjeta de memoria para realizar una copia de seguridad y restaurar fórmulas, parámetros del sistema y archivos de registro de mezclas.

Si es difícil acceder a los puertos USB del Hydro-Control, Hydronix puede suministrar una extensión USB con una conexión de montaje en panel: Número de pieza 0175.

La Tarjeta de memoria se puede insertar y extraer con la alimentación eléctrica encendida. No extraiga la Tarjeta de memoria cuando haya una copia de seguridad o una restauración en curso.

El proceso de copia de seguridad copia un archivo en la Tarjeta de memoria y sobrescribirá las copias de seguridad anteriores realizadas en esa Tarjeta.

2 Copia de seguridad y restauración

2.1 Copia de seguridad

Para realizar una copia de seguridad de la base de datos de Hydro-Control (parámetros de fórmula y del sistema y registro de mezcla):

- 1. Inserte una tarjeta de memoria en uno de los puertos USB.
- Pulse el botón Menú
 Pulse el botón Parámetros del sistema
 Pulse el botón Copia de seguridad/Restaurar

5. Pulse el botón Copia de seguridad.

Result. copia se	gur.	
Copia segur. bas	e datos correcta	
	OK	
	UK	

6. Cuando haya terminado, pulse Aceptar para regresar a la pantalla de parámetros.

2.2 Restauración

Para restaurar la base de datos de Hydro-Control:

1. Inserte una Tarjeta de memoria que contenga una copia de seguridad del Hydro-Control en uno de los puertos USB (el archivo HC06Database.sdf debería estar en el directorio raíz de la Tarjeta de memoria).

5. Pulse el botón Restaurar.

6. Pulse el botón Sí para sobrescribir la base de datos actual. A continuación, el Hydro-Control restaurará las fórmulas, los ajustes y el archivo de registro desde el archivo de la tarjeta de memoria y se reiniciará. La Tarjeta de memoria se puede extraer en cualquier momento una vez que el sistema se haya reiniciado completamente y aparezca la pantalla principal.

3 Actualización del Hydro-Control

Para actualizar el software en el Hydro-Control, extraiga la carpeta que contiene los archivos de actualización del software del archivo .ZIP a una Tarjeta de memoria USB. Se debería crear una carpeta en la carpeta raíz de la Tarjeta de memoria denominada 'DUA', que contiene una serie de archivos de actualización así como un archivo de actualización del dispositivo denominado 'hc06upgrademe.dup'. Esto se muestra en la Figura 53.

		7 7 7 0000		-	l	- 0	x
😋 🔵 🗢 📕 🕨 Computer 🕨 Removable Disk (E) 🕨 DUA 🕨				👻 🍫 Search DUA			Q
Organize 🔻 📄 Open Burn New folder					800	• 🔳	0
Removable Disk (J:)	*	Name	Date modified	Type S	ize		^
🔋 🔋 DUA		FactorySelfTest	10/02/2010 08:53	Application	52 KB		
🔒 de		FactorySelfTest	10/02/2010 08:53	Program Debug D	60 KB		
🎉 en-US		FancyButton.dll	05/02/2010 14:50	Application extens	23 KB		
🔰 es		FancyButton	05/02/2010 14:50	Program Debug D	94 KB		_
FactoryTestResources		FilterClass.dll	29/01/2010 11:38	Application extens	13 KB		
🔒 fr		FilterClass	29/01/2010 11:38	Program Debug D	22 KB		
🕌 it		FTD2XXLibrary.dll	29/01/2010 11:38	Application extens	16 KB		Ξ
🔒 nl		FTD2XXLibrary	29/01/2010 11:38	Program Debug D	30 KB		
		GraphComponent.dll	05/02/2010 14:50	Application extens	34 KB		
		GraphComponent	05/02/2010 14:50	Program Debug D	64 KB		
		HardwareClass.dll	10/02/2010 08:53	Application extens	16 KB		
		HardwareClass	10/02/2010 08:53	Program Debug D	48 KB		
	-	hc06upgrademe.dup	10/02/2010 14:34	DUP File	8 KB		
	-	HWMonitor2	29/01/2010 11:38	Application	26 KB		
		HWMonitor2	29/01/2010 11:38	Program Debug D	36 KB		
		Hydro-Control VI	10/02/2010 09:42	Application Manif	2 KB		
		E Hydro-Control VI	10/02/2010 09:42	Application	733 KB		
	-	B Hydro-Control VI.exe	12/11/2009 10:17	XML Configuratio	1 KB		-
hc06upgrademe.dup Date modified: 10/02/2010 14:34 DUP File Size: 7.98 KB	Date	created: 10/02/2010 14:34					

Inserte una Tarjeta de memoria USB en uno de los puertos USB del lateral derecho del Hydro-Control (orientado hacia la parte posterior de la unidad). La vista lateral del Hydro-Control se muestra en la Figura 52.

Parám. del sistema - Pág. 2 de 3					
Fecha/hora de sistema	Editar	Ajustes generales Idioma:			
Focha: 01/05/2020	fecha y	Español	~		
	hora	Registros Máx. Mix:	100		
Zona hor.: GMT Standard Time		Archivo	<u>~</u>		
alarma de configuración Alarma entrada cemento	Alar. mezo	la dem. húmeda			
Alarma fallo contador agua	🖌 🖌 Alarma lím	iite agua excedido			
Alar. fuga en válvula de agua	Alar. tmpo	. máx. mezcla seca sup	erado 🧹		
Alar. "no se requiere agua"	Alar. tmpo	. máx. mezcla húmeda s	super.		
Alarma demasiada agua calculada	🖌 🖌 Alarma fal	lo de sensor			
Alar. mezcla demas. seca	Alar. palas	mezcl. deterior.			
Tmpo. palas mezcl. deterior.	10 s Valor pala	s mezcl. deterior.	10 US		
Guardar cambios Actual	izar S	iguiente	Menú		

Figura 54 Pantalla de la página 2 de los parámetros del sistema

Actualizar

Pulse el botón Actualizar

y el sistema solicitará que se reinicie.

Tras el reinicio, el Hydro-Control se actualizará y se reiniciará automáticamente.

La Tarjeta de memoria no se debe extraer hasta que se haya completado la actualización y aparezca la pantalla principal.

NO DESCONECTE LA ALIMENTACIÓN DURANTE EL PROCEDIMIENTO DE ACTUALIZACIÓN.

Registro de parámetros del sistema

Configuración del agua

Parámetro	Unidades	Predeterminado	Valor de puesta en marcha
Modo de agua	Ninguna	Medido	
Impulsos por litro	Impulsos por litro/galón	1	
Tiempo de espera de contador de agua	Segundos	5	
Suministro fino	Litros/Galones	20	
Flujo de válvula fina	Litros/Galones	0	
Flujo de válvula gruesa	Litros/Galones	0	
Tiempo de activación de válvula fina	Segundos	0,5	
Tiempo de desactivación de válvula fina	Segundos	0,5	
Usar solo válvula fina	Ninguna	No	
Tiempo promediado	Segundos	10	
Circuitos de ciclo	Ninguna	1	

Configuración del control automático del sistema

Parámetro	Unidades	Predeterminado	Valor de puesta en marcha
Ganancia proporcional	Ninguna	5	
Ganancia integrada	Ninguna	0	
Ganancia derivada	Ninguna	0	

Seguimiento automático del sistema

Parámetro	Unidades	Predeterminado	Valor de puesta en marcha
Desviación de mezcla inicial	%	0,1	
Tiempo de mezcla inicial	Segundos	10	
Desviación de mezcla prehúmeda	%	0,1	
Tiempo de mezcla prehúmeda	Segundos	10	
Desviación de mezcla seca	%	0,1	
Tiempo de mezcla seca	Segundos	10	
Desviación de mezcla húmeda	%	0,1	
Tiempo de mezcla húmeda	Segundos	10	

Ajustes generales

Parámetro	Unidades	Predeterminado	Valor de puesta en marcha
Idioma	Ninguna	Inglés	

Comunicaciones remotas

Parámetro	Unidades	Predeterminado	Valor de puesta en marcha
Protocolo RS232	Ninguna	HC06	
Señal de admix	Ninguna	% de admix habilitado	

En las tablas siguientes se mencionan los fallos más comunes que se producen cuando se utiliza el controlador. Si no puede diagnosticar el problema a partir de esta información, póngase en contacto con el servicio técnico de Hydronix en el número +44 (0) 1483 468900 o por correo electrónico: support@hydronix.com.

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
No hay alimentación en el sensor.	Suministro de CC en la parte posterior del Hydro-Control, terminales 31 + 33.	+24 V CC	Localice el fallo en la fuente de alimentación o en el cableado.
El sensor se ha bloqueado temporalmente.	Apague el sensor y enciéndalo de nuevo.	Compruebe que el sensor funciona correctamente.	Compruebe los terminales del conector del sensor.
Los terminales del conector espec MIL del sensor están dañados.	Desconecte el cable del sensor y compruebe si hay algún terminal dañado.	Los terminales están doblados y pueden doblarse a la posición normal para que hagan contacto eléctrico.	Compruebe la configuración del sensor mediante la conexión a un PC.
Fallo interno o configuración incorrecta.	Conecte el sensor a un PC utilizando el software Hydro-Com y un convertidor RS485 adecuado.	La conexión digital RS485 funciona.	La conexión digital RS485 no funciona. Debe devolver el sensor a Hydronix para que lo reparen.

Síntoma: La pantalla muestra 'Buscando sensor' - no hay salida del sensor

Síntoma: Lecturas de sensor incorrectas

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Las lecturas sin escala del sensor son incorrectas.	Pulse Mostrar sin escala en la pantalla principal.	Las lecturas deben ser las siguientes: Sensor expuesto al aire = próximo a cero. Mano sobre el sensor = 75–85.	Póngase en contacto con Hydronix para obtener más detalles.
Calibración de fórmula incorrecta.	Compruebe los parámetros de la fórmula 'Ganancia de humedad' y 'Desviación de humedad'.	Desviación de humedad = 0 a -5. Ganancia de humedad = 0,12 a 3.	Vuelva a calibrar la fórmula según las instrucciones de la Guía del operador. La señal de humedad debe ser estable al final de los tiempos de mezcla inicial y final para mejorar la precisión.

Síntoma: Fallo en la salida

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Módulo OPTO incorrecto utilizado para la salida.	Intervalo de voltaje del módulo de salida. Como instrucción rápida, compruebe el color del módulo OPTO a través de los orificios situados en la parte posterior del controlador.	Color del módulo OPTO: Rojo: Módulo CC, normalmente hasta 60 V CC. Negro: Módulo CA, normalmente hasta 110 V CA.	Póngase en contacto con Hydronix para saber el régimen correcto del módulo OPTO.
Fallo de cableado.	Cuando se conecta el módulo OPTO, el LED OPTO se debería encender. Compruebe el cableado con el módulo OPTO encendido.	Consulte la Guía del usuario para obtener más detalles.	Fuerce la activación del relé y compruebe el cableado. Vaya a Menú > Configuración y estado de E/S. Seleccione la salida y active el relé.
Fusible fundido.	Retire la cubierta trasera y compruebe la continuidad del fusible en el módulo OPTO específico con un medidor.	Comprobación de continuidad correcta, cero ohmios.	Póngase en contacto con Hydronix para obtener un fusible de recambio.

Síntoma: Fallo en la entrada

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Módulo OPTO incorrecto utilizado para la entrada.	Intervalo de voltaje del módulo de entrada. Como instrucción rápida, compruebe el color del módulo OPTO a través de los orificios situados en la parte posterior del controlador.	Color del módulo OPTO:	Póngase en contacto con Hydronix para obtener más detalles.
		Blanco: Módulo CC, normalmente 10 – 32 V CC.	
		Negro: Módulo CA, normalmente hasta 110 V CA.	
Fallo de cableado.	Cuando se conecta el módulo OPTO, el LED OPTO se debería encender. Aplique el voltaje correcto en los terminales de entrada del módulo OPTO, es decir, para el módulo de entrada CC, 0 V conectado al terminal (–) y 24 V conectado al terminal (+).	Al aplicar el voltaje, se enciende el LED. El Hydro-Control debe estar encendido para realizar esta acción.	Cambie el módulo si hay disponible un módulo con el mismo rango de entrada y vuelva a aplicar la alimentación a todos los terminales.

Síntoma: Fallo en el contraste de la pantalla

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Fallo en la alimentación eléctrica interna a la luz de fondo.	-	Póngase en contacto con Hydronix para obtener detalles de reparación.	-
Fallo de la luz de fondo.	-	Póngase en contacto con Hydronix para obtener detalles de reparación.	-

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Fallo de la prueba automática de RAM.	Desconecte la alimentación y vuelva a conectarla.	Inicio correcto.	Póngase en contacto con Hydronix para obtener detalles de reparación.

Síntoma: Cuando la pantalla con alimentación se muestra oscura y la unidad emite un sonido

Síntoma: Pantalla azul durante encendido

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Provocada por la desconexión de la alimentación al Hydro-Control antes de apagar el sistema.	Mantenga pulsado el botón de alimentación hasta que la unidad se apague y vuelva a pulsarlo para reiniciarla.	Inicio correcto.	Si la pantalla azul sigue apareciendo, será necesario sustituir la Tarjeta del sistema; póngase en contacto con Hydronix para obtener más información.

Síntoma: Cuadro de diálogo naranja 'Error de filtro de escritura'

Posible explicación	Comprobación	Resultado necesario	Acción necesaria ante el fallo
Provocado por estado incorrecto del filtro de escritura.	Reinicie la unidad y compruebe si vuelve a aparecer el cuadro.	Inicio correcto.	Sustituya la Tarjeta del sistema por la Tarjeta del color correcto. El color de la Tarjeta debe ser el mismo que la Tarjeta del sistema suministrada de fábrica.

Agua de prehumedecimiento

Se trata del agua que se añade al inicio del proceso antes de que comience la mezcla seca.

Ajustes de copia de seguridad/restauración

Se puede realizar una copia de seguridad o bien restaurar las bases de datos de parámetros del sistema y registro de mezcla desde una tarjeta de memoria.

Calibración

El modo de cálculo del Hydro-Control se calibra ejecutando mezclas en modo de preajuste y añadiendo cantidades de agua, así como cambiando esta cantidad en función del material resultante. Una vez obtenida una buena mezcla, la fórmula se puede calibrar desde el registro de mezcla.

Calibración automática

Para simplificar la colocación de un nuevo brazo de sensor en un Hydro-Probe Orbiter, el sensor se puede calibrar automáticamente. Permite establecer los valores de agua y aire para el brazo. La superficie del sensor debe estar limpia, seca y carente de obstrucciones para ejecutar la calibración automática.

Dirección RS485

Se pueden conectar hasta 16 sensores en una red RS485 y la dirección identifica de manera exclusiva cada sensor. Los sensores se suministran de fábrica establecidos con la dirección 16 de forma predeterminada.

Humedad

Agua contenida en el material y alrededor del mismo. La humedad se define como un porcentaje utilizando el peso del agua y el peso del material en el que se encuentra. Aunque el peso del material puede ser peso en seco o peso en húmedo, el estándar para la industria del hormigón es utilizar el peso en seco.

Humedad de peso en húmedo

Contenido de humedad del material calculado como el porcentaje del peso del agua en el peso en húmedo del material en la muestra.

Humedad de peso en seco

Se trata de una medida estándar de la industria del hormigón del contenido de humedad. Se calcula como el porcentaje del peso de la humedad en el peso en seco del material. Como ejemplo, si tuviera 1000 kg de arena completamente seca y añadiera 100 kg de agua, la arena tendría un 10% de humedad. La arena y el agua juntas pesarían 1100 kg.

Incorporación de agua principal

Se trata del agua que se añade después de la mezcla seca y antes de ejecutar la mezcla húmeda.

Material

El material es el producto físico que está midiendo el sensor. El material debe estar circulando y debe cubrir completamente la placa frontal cerámica del sensor.

Promedio

Durante un ciclo de mezclado, el Hydro-Control toma un valor promedio al final de los tiempos de mezcla. El tiempo que adopta el promedio se puede definir en las páginas de parámetros del sistema.

RS485

Protocolo de comunicaciones en serie que los sensores emplean para comunicarse digitalmente con el sistema de control.

Salida analógica

Las salidas analógicas son corrientes o voltajes continuamente variables que se pueden configurar para enviar la humedad del sensor o la salida sin escala a un sistema de control de lotes mediante un módulo de entrada analógica.

Sensor

El sensor es el dispositivo físico que se utiliza para medir la humedad del material.

Sin escala

Se trata del valor bruto del sensor, que cambia linealmente con la cantidad de humedad del material que se está midiendo. El valor sin escala se preajusta para que lea 0 (en aire) y 100 (en agua).

Sonda

Consulte Sensor.

Tiempo de mezcla húmeda

Se trata del tiempo adoptado para la fase de mezcla húmeda. Es la fase de mezcla que se produce al final del lote tras haber añadido el agua principal. Durante el modo CALC, se produce cuando el agua se mezcla para homogeneizar la mezcla y, por tanto, debe establecerse con un plazo razonablemente largo. Durante el modo AUTO, el tiempo se puede reducir en función de la homogeneidad necesaria para el producto final.

Tiempo de mezcla seca

Se trata del tiempo tomado para la Mezcla seca, la primera mezcla que se produce una vez añadida el agua de prehumedecimiento. El Tiempo de mezcla seca puede ser breve para el modo AUTO, pero debería tardar más si se utiliza el modo CALC.

Si se selecciona una incorporación de dos pasos, el tiempo de mezcla seca se ejecuta dos veces, una vez después de añadir cualquier agua de prehumedecimiento y la segunda después de la primera incorporación de agua principal (se detiene cuando la incorporación de agua alcanza el punto de incorporación de aditivos).

USB

El Bus de serie universal es una interfaz que se puede utilizar para conectar dispositivos externos, como tarjetas de memoria, al Hydro-Control.

Referencia cruzada de documentos

Referencia cruzada de documentos

En esta sección se mencionan el resto de documentos a los que se hace referencia en esta Guía del usuario. Puede resultarle útil tener a mano una copia de ellos cuando se disponga a leer esta guía.

Número de documento	Título
HD0456	Guía del operador del Hydro-Control VI
HD0679	Guía de configuración y calibración del sensor de humedad Hydronix
HD0678	Guía de instalación eléctrica del sensor de humedad Hydronix
HD0676	Guía de instalación de Hydro-Mix
HD0677	Guía de instalación de Hydro-Probe Orbiter
HD0044	Hydro-Control IV Installation and Reference Guide

Índice

Accesorios12	2
Actualización	
Firmware93	3
Hydro-Control V60	0
Actualización del firmware93	3
Agua pesada	9
Alarmas	
Fuga en la válvula de agua 57	7
Alimentación eléctrica	, Л
Árbol do monús	+ 0
Arabivada 20	9
	9
Cable del sensor	ð
Cableado	_
Entradas analógicas26	6
Entradas de fórmula28	8
Entradas digitales26	6
Salidas analógicas2	7
Salidas digitales26	6
Cables	-
Analógicos 28	8
PS485 29	g
Sopor 20	0
Cielo de mezelado	0
	~
	2
Diseño	1
Mezcla sencilla63	3
Compensación de la temperatura53	3
Comunicaciones24	4
RS23224	4
RS48524	4
Conector	-
Alimentación 21	3
	1
Comunicacionea	т 2
Comunicaciones	ა ი
	2
Formula remota23	3
Salida22	2
Ubicaciones2	1
Conexiones	
Descripción general básica59	9
Conexiones básicas	9
Configuración	
Aqua pesada	9
Contenido de la caia	1
Control de admix 31 48 64 10	6
Conia de seguridad	2
Diagnósticos	2
Controlador	7
Diagrama da blaguas dal sistema	/ 0
Diagrama de bioques del sistema	ö
	~
Cicio de mezcia seca63	3
Ciclo de mezclado con admix64	4
Ciclo de mezclado de prehumedecimiento	
62	2
Entrada analógica	
Agua pesada	9
Cableado26	6

Entrada do fórmula	
	<u></u>
	20
Entrada digital	~~
	26
Glosario1	01
Hydro-Control V	
Actualización	60
Instalación	18
Instalación mecánica	
Montaje	18
Instalación mecánica	
Dimensiones	17
Introducción	13
Medidor de fluio	57
Modo de incorporación de aqua	•.
Aqua pesada	57
Cronometrado	58
Medido	57
Médulo do optrado	25
Módulo de enlido	20
Modulo de Salida	20
Modulos de Interraz	24
Diagramas de cableado de E/S	26
Opciones de voltaje de E/S	25
Módulos OPTO19,	24
Navegación por pantalla	29
Nueva instalación	
Pruebas	30
Pantalla táctil	
Capa protectora	20
Recalibración	33
Parámetros	
Fórmula	46
Sistema	34
Parámetros de fórmula	46
Aiustes de admix	53
Ajustes de corrección de la temperatura	53
Ajustes de modo automático	53
Ajustes de modo de cálculo	52
Aiustes de seguimiento automático	51
Control de mezcla	50
Detalles de la fórmula 11.12	17
	77 10
Incorporación de material	10
Tiompos do mozelo	40
Derémetres del sisteme	49 ว⊿
	34
Ajustes de control AUTO	20
Ajustes de seguimiento automático	31
Ajustes del agua	35
Ajustes generales	38
	38
Información de unidad	39
Peso	17
Pruebas	30
Agua pesada	39
Contador de agua	32
E/S	30
Sensor	30

Válvulas	32
Puertos USB	28
Registro de parámetros del sistema	95
Restauración	92
RS232	24
Ajustes del puerto	69
Ajustes del puerto	69
Comandos de control de la mezcladora	84
Comandos de estado de la mezcladora	83
Estado	70
Estado de alarma	85
Estado de E/S	84
Parámetros de fórmula	77
Parámetros del sistema	81
Registro de mezcla	72
RS485	24
Salida analógica	
Cableado	27
Salida digital	
Cableado	26
Segridad	
Clasificación IP	15
Seguimiento automático	66
Ňodo AUTO	67
Modo CALC	67
Modo Preajuste	67
Seguridad	14
Condiciones medioambientales	16
Limpieza	16
Marcas	14
Precauciones	.14
	•••

Rayos		16
Separación		15
Símbolos		14
Selección de fórmula remota		59
Señales		
RS232		69
Señales		
Admix	48,	64
Entrada de cemento	62,	63
RS232		69
Sistema		
Interconexiones		61
Sistemas de reacondicionamiento		58
Soporte remoto		87
servidor personalizado		88
tarjeta de expansión		
Entradas analógicas		25
Tarjeta de expansión		39
Entradas de selección de fórmula		25
Salidas analógicas		25
Tarjeta de memoria	.11,	91
Tarjetas de memoria		19
Tarjeta de datos	.19,	91
Tarjeta del sistema	.19,	91
Temperatura de funcionamiento		19
USB		91
VálvulasConsulte Válvulas d	e ag	jua
Válvulas de agua		55
Ejemplo de ajuste de tamaño		57
Instrucciones		55
Voltajes y temperaturas internas		39